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KALDI: Yet Another ASR Toolkit? 
Experiments on Italian children speech

In this paper, the KALDI ASR engine adapted to Italian is described and the results ob-
tained so far on some children speech ASR experiments are reported. We give a brief over-
view of KALDI, we describe in detail its DNN implementation, we introduce the acoustic 
model (AM) training procedure and we end describing some ASR experiments on Italian 
children speech together with the final test procedures.

1. Introduction
Deep Neural Networks (DNNs) are the latest hot topic in speech recognition. 
Since around 2010, many papers have been published in this area, and some of the 
largest companies (e.g. Google, Microsoft) are starting to use DNNs in their pro-
duction systems. Moreover, many different Automatic Speech Recognition frame-
works have been developed for research purposes during the last years and, nowa-
days, various open-source automatic speech recognition (ASR) toolkits are availa-
ble to even small research laboratories. Systems such as HTK (Young et al., 2009), 
SONIC (Pellom, 2001), (Pellom, Hacioglu, 2003), SPHINX (Lee et al., 1990), 
(Walker et al., 2004), RWTH (Rybach et al., 2009), JULIUS (Lee et al., 2001), 
KALDI (Povey et al., 2011), the more recent ASR framework SIMON (Simon, 
WEB), and the relatively new system called BAVIECA (Bolaños, 2012) are a simple 
and probably not exhaustive list.

Indeed new systems such as KALDI (Povey et al., 2011) demonstrated the ef-
fectiveness of easily incorporating “Deep Neural Network” (DNN) techniques 
(Bengio, 2009) in order to improve the recognition performance in almost all rec-
ognition tasks.

In this paper, the KALDI ASR engine adapted to Italian is described and the 
results obtained so far on some children speech ASR experiments are reported. We 
give a brief overview of KALDI, and in particular of its DNN implementation, we 
introduce the acoustic model (AM) training procedure and we end describing some 
experiments on Italian children speech together with the final test procedures.
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2. KALDI
As written in his official web site (http://KALDI.sourceforge.net), the KALDI 
ASR environment should be mainly taken into consideration for the following sim-
ple reasons:
– it’s “easy to use” (once you learn the basics, and assuming you understand the 

underlying science);
– it’s “easy to extend and modify”;
– it’s “redistributable”: unrestrictive license, community project;
– if your stuff works or is interesting, the KALDI team is open to including it and 

your example scripts in our central repository: more citation, as others build on 
it.

Another main reason for choosing KALDI is represented by the fact that com-
plete open source recipes for building speech recognition systems, that work from 
widely available databases such as those provided by the ELRA or Linguistic Data 
Consortium (LDC), are easily available for testing the system.

3. DNN (Deep Neural Networks) in KALDI1II
KALDI currently contains two parallel implementations for DNN training. Both 
of these recipes are deep neural networks where the last (output) layer is a softmax
layer whose output dimension equals the number of context-dependent states in the 
system (typically several thousand). The neural net is trained to predict the posteri-
or probability of each context-dependent state. During decoding the output prob-
abilities are divided by the prior probability of each state to form a “pseudo-likeli-
hood” that is used in place of the state emission probabilities in the HMM.

The first implementation (Kaldi, WEB-a), (Vesely et al., 2013) supports 
Restricted Boltzmann Machines (RBM) pre-training (Hinton et al., 2012), (Dahl 
et al., 2012), (Seide et al., 2011), stochastic gradient descent training using NVidia 
graphics processing units (GPUs), and discriminative training such as boosted 
MMI (Povey et al., 2008) and state-level minimum Bayes risk (sMBR) (Gibson, 
Hain, 2006), (Povey, Kingsbury, 2007).

The second implementation of DNNs in KALDI (Kaldi, WEB-b), (Zhang et 
al., 2014), (Povey et al., 2015) was originally written to support parallel training on 
multiple CPUs, although it has now been extended to support parallel GPU-based 
training and it does not support discriminative training.

One is located in code sub-directories nnet/ and nnetbin/2, and is primarily 
maintained by Karel Vesely. The other is located in code subdirectories nnet2/ and 
nnet2bin/, and is primarily maintained by Daniel Povey (this code was originally 

1 Most of the text used to briefly describe Kaldi in this section is taken from “Deep Neural Networks 
in Kaldi” (http://kaldi.sourceforge.net/dnn.html) with permission from the Author (Daniel Povey).
2 See the code at: https://svn.code.sf.net/p/kaldi/code/trunk/egs.
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based on an earlier version of Karel’s code, but it has been extensively rewritten). 
Neither codebase is more “official” than the other. Both are still being developed in 
parallel.

In the example directories (referring to the HKUST Mandarin Telephone 
Speech, Resource Management, Switchboard, Timit, and Wall Street Journal cor-
pora)3 neural net example scripts can be found. Before running those scripts, the
first stages of “run.sh” in those directories must be run in order to build the systems 
used for alignment.

Regarding which of the two setups you should use:
– Karel’s setup (nnet1) generally gives somewhat better results but it only supports 

training on a single GPU card, or on a single CPU which is very slow.
– Dan’s setup generally gives slightly worse results but is more flexible in how you 

can train: it supports using multiple GPUs, or multiple CPU’s each with multi-
ple threads. Multiple GPU’s is the recommended setup. They don’t have to all 
be on the same machine.
The reasons for the performance difference is still unclear, as there are many dif-

ferences in the recipes used. For example, Karel’s setup uses pre-training but Dan’s 
setup does not; Karel’s setup uses early stopping using a validation set but Dan’s 
setup uses a fixed number of epochs and averages the parameters over the last few 
epochs of training. Most other details of the training (nonlinearity types, learning 
rate schedules, etc.) also differ.

3.1 Karel’s DNN training implementation

The implementation of DNNs from Karel Vesely (Kaldi, WEB-a), (Vesely et al., 
2013) uses the following techniques:
– layer-wise pre-training based on RBMs (Restricted Boltzmann Machines);
– per-frame cross-entropy training;
– sequence-discriminative training, using lattice framework, optimizing sMBR 

criterion (State Minimum Bayes Risk).
The systems are built on top of MFCC, LDA, MLLT, fMLLR with CMN4 fea-

tures – see (Rath et al., 2013) for all acronyms references – obtained from auxiliary 
GMM (Gaussian Mixture Model) models. Whole DNN training is run in a single 
GPU using CUDA (Compute Unified Device Architecture, the parallel comput-
ing architecture created by NVidiaTM). However, cudamatrix library is designed 
to also run on machines without a GPU, but this tends to be more than 10x slower.

The script for standard databases such wsj is located at: “egs/wsj/s5/local/
run_dnn.sh” and it is split into several stages. At first the 40-dimensional features 

3 such as egs/hkust/s5b, egs/rm/s5, egs/swbd/s5, egs/timit/s5/, and egs/wsj/s5/. Karel’s example 
scripts can be found in local/run_dnn.sh or local/run_nnet.sh, and Dan’s example scripts can be found 
in local/run_nnet2.sh.
4 MFCC: Mel-Frequency Cepstral Coefficients; LDA: Linear Discriminant Analysis; MLTT: 
Maximum Likelihood Linear Transform; fMLLR: feature space Maximum Likelihood Linear 
Regression; CMN: Cepstral Mean Normalization.
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(MFCC, LDA, MLLT, fMLLR with CMN) are stored to disk in order to simplify 
the training scripts.

3.1.1 Pre-training phase
The implementation of layer-wise RBM (Restricted Boltzmann Machine) pre-train-
ing is following “www.cs.toronto.edu/~hinton/absps/guideTR.pdf ” (Hinton, 
2010).

The training algorithm is Contrastive Divergence with 1-step of Markov Chain 
Monte Carlo sampling (CD-1). The hyper-parameters of the recipe were tuned on 
the 100 hours Switchboard subset. If smaller databases are used, mainly the number 
of epochs N needs to be set to 100 hours/set_size. The training is unsupervised, so
it is sufficient to provide single data-directory with input features.

When training the RBM with Gaussian-Bernoulli units, there is a high risk of 
weight-explosion, especially with larger learning rates and thousands of hidden neu-
rons. To avoid weight-explosion, a mechanism has been implemented, which com-
pares the variance of training data with the variance of the reconstruction data in a 
minibatch. If the variance of reconstruction is > 2x larger, the weights are shrinked 
and the learning rate is temporarily reduced.

3.1.2 Frame-level cross-entropy training
In this phase a DNN which classifies frames into triphone-states is trained. This 
is done by mini-batch Stochastic Gradient Descent5. The default is to use Sigmoid 
hidden units, Softmax output units and fully connected layers AffineTransform. 
The learning rate by default is 0.008, size of mini-batch 256; no momentum or reg-
ularization is used. The optimal learning-rate differs with type of hidden units, the 
value for sigmoid is 0.008, for tanh 0.00001.

The input_transform and the pre-trained DBN (i.e. Deep Belief Network, stack 
of RBMs) is passed into to the script using the options ‘–input-transform’ and ‘–
dbn’; only the output layer is initialized randomly. An early stopping criterium is 
used to prevent over-fitting: for this, the objective function on the cross-validation 
set (i.e. held-out set) is measured. Therefore two pairs of feature-alignment dirs are
needed to perform the supervised training.

3.1.3 Sequence-discriminative training
In this phase, the neural network is trained to classify correctly the whole sentences, 
which is closer to the general ASR objective than frame-level training. The objec-
tive of sequence-discriminative training is to maximize the expected accuracy of 
state labels derived from reference transcriptions: lattice framework to represent 
competing hypothesis is used. The training is done by Stochastic Gradient Descent 
(SGD) with per-utterance updates, low learning rate: 1e-5 kept constant is used and 

5 A good summary paper on DNN training is “Deep Neural Networks for Acoustic Modeling 
in Speech Recognition: The Shared Views of Four Research Groups” by Geoffrey Hinton’s group 
(Hinton et al., 2012).
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3-5 epochs are done. Faster convergence when re-generating lattices after 1st epoch
are observed.

MMI, BMMI, MPE and sMBR6RR  training are all supported – (see Rath et al.,
2013 for all acronyms references). All the techniques perform very similarly, even if 
sMBR is a little bit better. In sMBR optimization silence frames are excluded from 
accumulating approximate accuracies7 (Vesely et al., 2013).

3.2 Povey’s DNN training implementation

For the full documentation that covers Dan Povey’s version of the deep neural net-
work code in KALDI one could refer to the following web link (Kaldi, WEB-b), 
and to the following papers (Zhang et al., 2014; Povey et al., 2015).

In its last implementation stage, as indicated in (Povey et al., 2015), where the 
Dan’s DNN is used on a speech recognition setup called Fisher English, which is 
English language conversational telephone speech, sampled at 8kHz, for a total 
amount of training data of 1600 hours, the “... DNN system uses speaker adapted 
features from a GMM system, so it requires a first pass of GMM decoding and 
adaptation ...”.

... The GMM system is based on MFCC features, spliced across ±3 frames and 
processed with LDA+MLLT to 40-dimensional features, then adapted with fea-
ture-space MLLR (fMLLR) in both training and test time. See (Povey, Ghoshal, 
2011) for an explanation of these terms and the normal system build steps. All these 
systems used the same phonetic context decision tree with 7880 context-dependent 
states; the GMM system had 300000 Gaussians in total ...
... The 40-dimensional features from GMM are spliced across ±4 frames of con-
text and used as input to the DNN. DNN is a p-norm DNN (Zhang et al., 2014), 
with 5 hidden layers and p-norm (input, output) dimensions of (5000, 500) respec-
tively, i.e. the nonlinearity reduces the dimension tenfold. In this framework 15000 
“sub-classes” are used – see Section C.3 of (Povey et al., 2015) for explanation – and 
the number of parameters is 19.3 million. The system is trained for 12 epochs with 
learning rate varying from 0.08 to 0.008, trained with 8 parallel jobs with online 
natural gradient SGD (NG-SGD) and, for this DNN system, K=400000 samples 
per outer iteration for each machine are used for training...

As for the TIMIT recipe (s5), Dan’s DNN is much simpler and adopts a classic 
Hybrid Training and Decoding framework using a simple deep network with tanh 
nonlinearities. Moreover, also system combination using minimum Bayes risk de-
coding is used, and in this case a lattice combination is used to create a union of 
lattices normalized by removing the total forward cost from them and using the 
resulting lattice as input to the last decoding step.

6 MMI: Maximum Mutual Information; BMMI: Boosted MMI; MPE: Minimum Phone Error; 
sMBR: State-level Minimum Bayes Risk.
7 More detailed description is at: http://www.danielpovey.com/files/2013_interspeech_dnn.pdf.
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4. KALDI on Italian
In this section, the adaptation of KALDI to Italian is described, starting from the 
TIMIT recipe, and the results obtained so far on some children speech ASR exper-
iments are reported (see Table 1).

In the experiments described below, the Italian FBK ChildIt Corpus (Gerosa 
et al., 2007) was taken into consideration. This is a corpus that counts almost 10 
hours of speech from 171 children; each child has read about 60 children literature 
sentences; the audio was sampled at 16 kHz, 16 bit linear, using a Shure SM10A 
head-worn mic.

Table 1 - Preliminary results obtained in the experiments executed on the CHILDIT 
corpus in various configurations adapting the KALDI’s TIMIT-recipe scripts

(see text for the definition of all keywords)

Various experiments have been carried out in many configurations and in all cases, 
training and test materials have been kept separate. In all the experiments described 
in this work, the standard MFCC features were considered, setting reasonable de-
faults, even if other options could be exploited in the future. The results, shown in 
Figure 1, are the best obtained with KALDI on the CHILDIT corpus and they are 
the best obtained so far in comparison with those obtained by similar experiments 
reported in the literature (Gerosa et al., 2007; Giuliani, Gerosa, 2003; Cosi, Pellom, 
2005; Cosi, 2008; Cosi, 2009; Cosi, Hosom, 2000; Cosi et al., 2014).

Phone Error Rate (PER) was considered for computing the score of the recog-
nition process. The PER is defined as the sum of the deletion (DEL), substitution 
(SUB) and insertion (INS) percentage of phonemes in the ASR outcome text with 
respect to a reference transcription. PCR and SER refers to the Phone Correct Rate 
and Sentence Error Rate respectively.

Ideally, a hand-labelled reference would have been preferred, because it would 
have been corrected at the phonetic level to take into account children’s speech 
pronunciation mistakes. Since this was not available for the CHILDIT corpus, the 
automatic phonetic sequences obtained by a Viterbi alignment of the word-level or-
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thographic transcription have been used. The reference test transcriptions were cre-
ated with a SONIC-based aligner using a previously trained children speech Italian 
acoustic model (Cosi, Pellom, 2005). This method was chosen because it allowed 
for automatically selecting the best pronunciation for each word in the training data 
among the alternative choices available in the 400,000-word Italian lexicon availa-
ble.

The results shown in Table 1 refer to the various training and decoding experi-
ments – see (Rath et al., 2013) for all acronyms references:
– MonoPhone (mono);
– Deltas + Delta-Deltas (tri1);
– LDA + MLLT (tri2);
– LDA + MLLT + SAT (tri3);
– SGMM2 (sgmm2_4);
– MMI + SGMM2 (sgmm2_4_mmi_b0.1-4);
– Dan’s Hybrid DNN (tri4-nnet),
– system combination, that is Dan’s DNN + SGMM (combine_2_1-4);
– Karel’s Hybrid DNN (dnn4_pretrain-dbn_dnn);
– system combination that is Karel’s DNN + sMBR (dnn4_pretrain-dbn_dnn_1-

6).

In the Table, SAT refers to the Speaker Adapted Training (SAT), i.e. train on fM-
LLR-adapted features. It can be done on top of either LDA+MLLT, or delta and 
delta-delta features.

If there are no transforms supplied in the alignment directory, it will estimate 
transforms itself before building the tree (and in any case, it estimates transforms 
a number of times during training). SGMM2 refers instead to SGMM training 
(Huang, Hasegawa-Johnson, 2010) with speaker vectors. This training would nor-
mally be called on top of fMLLR features obtained from a conventional system, 
but it also works on top of any type of speaker-independent features (based on del-
tas+delta-deltas or LDA+MLLT).

On this difficult phonetic ASR task, Karel’s DNN looks slightly better than 
Dan’s DNN and it outperforms all other non-DNN configurations.

5. Conclusions
At its early stage, the KALDI toolkit supported modeling of context-depend-
ent phones of arbitrary context lengths, all commonly used techniques that can 
be estimated using maximum likelihood, and almost all adaptation techniques 
available in the ASR literature. At present, it also supports the recently proposed 
Semi-supervised Gaussian Mixture Model (SGMMs) (Huang, Hasegawa-Johnson, 
2010), (Povey et al., 2011), discriminative training, and the very promising DNN
hybrid training and decoding (Kaldi, WEB-a; Vesely et al., 2013; Kaldi, WEB-b; 
Zhang et al., 2014; Povey et al., 2015). Moreover, developers are working on using 
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large language models in the FST framework, and the development of KALDI is 
continuing.

The adaptation of KALDI to Italian, and in particular to the ChildIt corpus, 
was indeed quite straightforward, and results are truly exceptional with respect to 
those previously obtained on the same data (Gerosa et al., 2007; Giuliani, Gerosa, 
2003; Cosi, Pellom, 2005; Cosi, 2008; Cosi, 2009; Cosi, Hosom, 2000; Cosi et 
al., 2014). Indeed, this is mainly because all the very last ASR techniques, includ-
ing DNNs, could be easily implemented by adapting to Italian the already available 
downloadable scripts written by a quite large number of various developers around 
the world for a similar task in English based on TIMIT.
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