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An automatic speech recognition Android app 
for ALS patients

This paper describes AllSpeak, an Automatic Speech Recognition (ASR) Android 
Application developed for Italian-speaking patients with Amyotrophic Lateral Sclerosis 
(ALS). It allows to recognize a predefined and customizable set of basic utterances that are 
used by the patient in everyday life (e.g., “I’m thirsty”, “I feel pain”, etc…). The ASR engine is 
based on deep learning architectures and it uses a simple decoding strategy to allow offline 
(i.e., w/o any network connection) and fast decoding. Although deep learning approaches 
have achieved outstanding results on different speech recognition tasks, recognition of im-
paired speech is still quite challenging for an ASR system mainly due to a scarce availability 
of training data and a large variability of impairments. We have addressed these two prob-
lems by limiting recognition to a set of key phrases/words corresponding to the patient’s 
primary needs and by strongly adapting the neural networks to the target speaker’s voice. 
Results show that the type of network architecture and the training strategy have both a 
very significant impact on recognition accuracy of dysarthric speech. Although different 
architectures and training strategies perform similarly on healthy speakers, recurrent neural 
networks trained in sequence-to-sequence fashion significantly outperform any other meth-
od on most of ALS speakers.

Keywords: automatic speech recognition, amyotrophic lateral sclerosis, smartphone applica-
tion, deep neural networks.

1. Introduction
Amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle paralysis 
caused by degeneration of motor neurons in the primary motor cortex, corticos-
pinal tracts, brainstem, and spinal cord (Van Es et al., 2017). ALS is relentlessly 
progressive – 50% of patients die within 30 months of symptom onset and about 
20% of patients survive between 5 years and 10 years after symptom onset (Talbot, 
2009). Modern technology has allowed people with ALS to compensate to some
degree for almost every loss of function, making it possible even for those with al-
most no muscle function to continue to breathe, communicate, eat, travel and use a 
computer. In particular, for many people with ALS, the speaking ability may be lost 
as weakness increases in the muscles of the mouth and throat that control speech 
and in the muscles that help generate the pressure that moves air over the vocal 
folds. Dysarthria is indeed the presenting symptom in 30% of patients with ALS 
and is found in >80% of patients (Hardiman, 2017) and this loss of communication 
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prevents patients from participating in many activities and may lead to social isola-
tion, reducing the quality of life (QoL).

The goal of management of dysarthria in ALS patients is to optimize commu-
nication effectiveness for as long as possible. Speech therapy can delay the progres-
sion of dysarthria, and augmentative and alternative communication techniques are 
the treatments of choice and can enhance QoL in the most advanced phases of ALS. 
Nevertheless, although there have been several attempts to improve speech recogni-
tion for dysarthric speakers as communication techniques based on brain–computer 
interfaces, these efforts have not until recently converged and their use in the clini-
cal setting is still limited. Moreover, modern automatic speech recognition (ASR) is 
ineffective at understanding relatively unintelligible speech caused by dysarthria and 
traditional representations in ASR such as Hidden Markov models (HMMs) trained 
for speaker independence that achieve 84.8% word-level accuracy for non-dysarthric 
speakers might achieve less than 4.5% accuracy given severely dysarthric speech on 
short sentences (Rudzicz, 2010a; Rudzicz, 2010b; Rudzicz, 2012). Recently, more ac-
curate dysarthric speech recognition system has been developed by using deep learn-
ing based approaches (España-Bonet, Fonollosa, 2016; Joy, Umesh, Abraham, 2017; 
Vachhani, Bhat, Das & Kopparapu, 2017). However, in case of severe disability, the 
ASR performance still remains poor. Causes of poor performance may include slurred 
speech, weak or imprecise articulatory contacts, weak respiratory support, low vol-
ume, incoordination of the respiratory stream, hypernasality, and reduced intelligibil-
ity (Kim, Kent & Weismer, 2011). Additionally, dysarthric speech is not sufficiently 
covered in the training datasets of state-of-the-art commercial ASR systems. 

As a result, dysarthria can have dramatic consequences for speech intelligibility e
among artificial listeners – that is, speech recognition systems. In some preliminary 
experiments we have carried out on the TORGO dataset (Rudzicz, Namasivayam & 
Wolff, 2012), Google Speech API and IBM speech-to-text could misrecognize more 
than the 80% of words in single word utterances. 

This paper describes AllSpeak, an Automatic Speech Recognition (ASR) Android 
Application specifically developed for patients with ALS. It allows patients to com-
municate, through their residual speech abilities, their basic needs to their families 
and caregivers.

2. The AllSpeak App
The AllSpeak App is a hybrid App developed with the Ionic 1.X framework for the ap-
plicationAndroid 6.0 platform. All the speech processing and recognition modules are 
implemented within a custom multi-threaded Cordova Plugin. The latter is composed 
by the following modules, each running on its own independent thread:

• audio acquisition (INPUT);
• voice activity detection (VAD);
• spectral features extraction (FE);
• speech command recognition, mainly based on Tensorflow neural networks (SR);
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Once recognition is activated, these four processes run in parallel.
The INPUT module extracts speech from the smartphone’s microphone and 

sends it to the VAD module. 
When the VAD module recognizes speech activity, it sends the extracted speech 

segments to the FE module that calculates the spectral features and, once complet-
ed, sends concatenated feature vectors to the SR module. 

The VAD module sends a detected speech segment to the FE module only if its 
duration is longer than a predefined threshold (500 ms in our case). The sent seg-
ment also contains a non-speech “tail”, i.e., up to 400 ms long “active samples” after 
the last speech sample identified as speech. Then the resulting segment is consid-
ered as a command and after feature extraction its associated verbal command will 
be inferred by the SR module. The SR module consists in a simple speech decoder 
and runs preloaded Tensorflow deep neural networks.

This four-thread approach optimizes the recognition process, since the to-be-in-
ferred features are already present in the SR module when the VAD module decides 
that a new command has been pronounced by the App user.

3. The ASR engine
The ASR engine (the SR module of the previous section) is based on deep neural 
networks. The spoken command decoding is simply the classification of the input 
speech segment and depends on the type of neural network used. 

Neural networks training have been split in two steps: speaker-independent 
training on a control data set (i.e. healthy speakers) and speaker-adaptation to the 
patient of interest. Speaker adaptation has been applied to the deep feedforward 
neural networks (DNNs) to compensate the mismatch between clean speech-
trained model and a small set of impaired speaker’s data. 

The ASR can use two different types of deep neural networks: deep feedforward 
neural networks (DNNs) and deep recurrent neural networks (RNNs).

3.1 Feature extraction technique

Feature extraction is the main part of the speech recognition system. The goal of feature 
extraction is to compute a sequence of feature vectors to have a compact representation 
of input signal. Because every speech and speaker has different individual characteristics 
embedded in their speech utterances, it is better to perform feature extraction in short 
term interval that would reduce these variabilities. Hence, the input voice signal is ex-
amined over a short period of time where the characteristics of speech signal become 
stationary. In general, a speech signal contains some acoustic information which can be 
represented by these features. There are several feature extraction techniques, however 
the use of Mel Frequency Cepstral Coefficients (MFCCs) can be considered as one of 
the standard methods for feature extraction (Motlíček, 2003) and it is also the technique 
employed in our algorithm. MFCCs are the result of a cosine transform of the real loga-
rithm of the short-term energy spectrum expressed on a mel-frequency scale. 
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In our algorithm, the speech signal is first divided into time frames consisting of 
an arbitrary number of samples. Each time frame is then windowed with 25 ms length 
Hamming window shifted every 10ms and for each speech frame, a set of MFCCs is 
computed. The number of spectral features employed in the DNN is listed below.

FBANKS (log mel-filter bank channel outputs):
• 24 FBANKS + temporal delta and acceleration coefficients (72 parameters per 

frame);
• 24 FBANKS + spectral delta and acceleration coefficients (72 parameters per 

frame);
MFCCs (mel-frequency cepstral coefficients):

• 13 MFCCs + temporal delta and acceleration coefficients (39 parameters per 
frame)

• 13 MFCCs + spectral delta and acceleration coefficients (39 parameters per 
frame)

Note that spectral deltas and acceleration coefficients are heuristic-based features we 
have proposed to account for the small training dataset. These features have an impor-
tant impact for feedforward DNN as we will see in the result section.

3.2 ASR based on feedforward DNNs

Built on DNNs, the decoder simply averages the spoken command posterior probabil-
ities that the DNN outputs at each speech frame and selects the command with the 
highest posterior.

The control dataset consisted of 23 commands spoken by eight healthy subjects, 
each command repeated from 8 to 10 times and the patient dataset comprised the same 
23 commands spoken by eight ALS patients, each command repeated from 4 to 10 
times – depending on patient’s medical condition.

Regarding the DNN architecture and training, a three hidden layer DNN was 
implemented for the first training step on controls with an input layer containing 792 
nodes (72 features x 11 context frames), the hidden layers with 500 nodes each and the 
output layer with 23 nodes, as many as the number of commands.

Once the first training step is completed, speaker adaptation comes in. We have 
experimented with a simple speaker-adapted layer insertion strategy consisting in 
adding input, output or hidden layers to the original net and then optimizing the 
parameters of that/those layer(s) only (see for example, Neto, Almeida, Hochberg, 
Martins, Nunes, Renals & T. Robinson, 1995; Gemello, Mana, Scanzio, Laface & 
De Mori, 2007; Li, Sim, 2010). For example, adding a first input layer should serve 
as “normalization” of the input, where the patient’s input speech is transformed in 
order to closely match the input of the control training data.

As mentioned above, the DNN outputs are sentence/command posteriors:

(1)
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where y*= selected sentence,** s=sentence/command T= number of frames, TT xt = concate-
nated vectors at time t.tt

This very simple decoding strategy resembles the key phrase recognition strategy pro-
posed for Google small footprint keyword spotting in Chen et al. (2014).

3.2.1 Results
Averaged results for both the acoustic features employed with 23 different record-
ed commands pronounced by eight ALS patients and by eight healthy controls are 
shown in Table 1.

Table 1 - Average Performance (Command Error Rate)

Acoustic Features

FBANKS MFCC

Spectral 17.8 % 24.9 %

Temporal 32.7 % 32.7 %

Previously showed results are primarily related to patient’s vocabulary size and mo-
dality of speech (intelligible or degraded speech) depending on the extent of the 
disease in each patient at the time of this study. A more detailed per-speaker accu-
racy is displayed in Table 2, together with a Therapy Outcome Measuring (TOM) 
tool using a Rating Severity Scale from 0-5 to rate scores of dysarthria (0 = normal, 
3 = moderate and 5 = severe).

Table 2 - Per Speaker Command Error Rates

Speaker Temporal 
FBANKS

Spectral 
FBANKS

Temporal 
MFCC

Spectral 
MFCC

TOM

BB 60.9 % 21.7 % 47.8 % 39.1 % 1
DAD 4.3 % 0.0 % 0.0 % 0.0 % 4
DG 21.7 % 8.7 % 43.5 % 4.3 % 2
PN 36.4 % 13.6 % 36.4 % 13.6 % 3
RS 39.1 % 26.1 % 30.4 % 34.8 % 1
SE 30.4 % 26.1 % 47.8 % 52.2 % 3
TE 54.5 % 31.8 % 31.8 % 36.4 % 3
VL 14.3 % 14.3 % 23.8 % 19.0 % 3

3.3 ASR based on RNNs

This section refers to the decoding strategy based on recurrent neural networks 
(RNNs) trained using a sequence-to-sequence approach. The sequence-to-se-
quence approach is not the only one we have tested (e.g., we also experimented with 
connectionist temporal classification) but it is the one that turned out to be the 
most successful. In this approach, the entire variable-length sequence of feature vec-
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tors representing the speech segment is fed into the RNN that returns one single 
vector of posterior probabilities with one element for each command. The decoder 
simply selects the command with the largest posterior probability.

3.3.1 Architecture
RNNs have recently drawn the attention of researchers as they have proven to be a 
suitable tool to model temporal sequences. Indeed, it has been shown that RNNs 
can outperform feed-forward networks on large-scale speech recognition tasks (Sak 
et al., 2014). A recurrent neural network is a neural network that consists of a hid-
den state h which operates on a variable-length sequence x = (x1, ... xT) through a TT
non-linear activation function fn In our system, the input x is a vector that representsff
the acoustic features and we aim at finding the most likely corresponding command 
y. At each time step t the hidden state ht

 of the RNN is updated by ht
 = f (ht


–1, xt ).

Finally, it estimates the label posterior p(y(( t  |t xt, ht
). The power of RNN relies on 

taking into account temporal dependencies over the input sequence, either unidi-
rectionally or bidirectionally. Unidirectional RNN estimates the label posteriors 
using only the left (past) context of the recurrent input, while bidirectional RNN 
uses separate layers for processing the input in the forward (i.e., from left to right) 
and backward (i.e., from right to left) directions. In the latter case, we will have 
p(y(( t  | t xt, ht

, ht
), where ht

 = g(ht


+1, xt) for some nonlinear function g. The limit gg
of RNNs is that they can capture only very short time dependencies. To overcome 
this problem, we looked at a particular type of recurrent neural networks: the long 
short-term memory (LSTM) (Hochreiter, Schmidhuber, 1997). In this work, we 
implemented the bidirectional LSTM (BLSTM) architecture.

Typically, in speech recognition, both recurrent and feed-forward networks are 
trained as frame-level classifiers. As a consequence, the alignment between audio 
and transcription sequences has to be determined in order to have a target for every 
frame. Typically, alignments are provided by a Gaussian Mixture Model – Hidden 
Markov Model (GMM-HMM) system trained with the Baum-Welch algorithm. 
However, a good alignment of impaired speech may not be feasible, and that can 
have catastrophic consequences on the (frame-level) training of neural networks 
(as labels would be very noisy). To address these issues, we trained the BLSTM as a 
sequence-to-sequence model (Sutskever, Vinyals & Le, 2014). This method allows 
to train the network by taking in input a sequence of length T and giving as an out-T
put the correspondent sequence of length TʹTT , where T and T TʹTT  are not necessarily the 
same. In our case, the output sequence is a command and, therefore, TʹTT  = 1.

The underlying idea is very simple: an encoder (or reader) BLSTM processes 
the input sequence and emits a fixed-size context variable C, which represents a CC
summary of the input sequence. A decoder (or writer) takes as input the context C
and generates the output sequence. Usually, the final hidden state of the encoder 
is used to compute C. In terms of probability, the sequence-to-sequence architec-CC
ture maximizes the probability of the command, given the whole acoustic sequence, 
p(y | x1, ... z11 T).TT
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3.3.2 Experimental setup 
We evaluated the sequence-to-sequence BLSTM on the AllSpeak dataset. In par-
ticular, we tested five patients and two control speakers in order to cover the whole 
range of dysarthric degrees (on the TOM scale). From the speech of these speak-
ers we extracted the adaptation data and the testing data. We only considered the 
temporal MFCC feature vectors, as they are the most conventional choice. For all 
the experiments, we used the BLSTM network with 5 hidden layers and 250 units 
per layer. We set the initial learning rate to be 0.01, and we exponentially decayed 
the learning rate by a factor of 0.7, every 3000 steps. Our model was trained to 
minimize the cross entropy (within the sequence-to-1 paradigm), by using the mo-
mentum optimizer with momentum equal to 0.9. We also clipped the gradient to 
avoid the vanishing/exploding gradient problem. Cross-validation was employed 
to get the best number of training epochs. To reduce the mismatch between the 
acoustic model and the testing speaker, we performed the speaker adaptation. More 
precisely, after training the network, we added a feed-forward layer atop the input. 
We trained the new layer, freezing the other ones, on the adaptation data. Finally, 
we used the testing data to measure the level performance of the model.

3.3.3 Results
Table 3 shows the command error rate (CER). As expected, the error is lower 
on the control speakers testing. Surprisingly, the sequence-to-sequence BLSTM 
achieves a good performance even in presence of dysarthric speech, with a mini-
mum error of 4% on the speaker SG. In every case, the error is reduced (or remains 
equal) after speaker adaptation. In the best case, adaptation provides an error re-
duction from 71.7% to 21.7%. Note that the averaged error rates are not referred 
to all speakers but only to BB, PN, RS and SE. This is to compare the CERs with 
the ones coming from Table 2. As we can see, we obtained a CER reduction from 
36.0% to 16.6%. 

Table 3 - Sequence-to-sequence BLSTM results

Speaker Patient/Control CER (without adaptation) CER (after adaptation) TOM

AI Control 7.0 % 7.0 % 0
CD Control 8.0 % 1.3 % 0
BB Patient 25% 18.2 % 1
PN Patient 34.8 % 13 % 3
RS Patient 71.7 % 21.7 % 1
SE Patient 4.0 % 4.0 % 3
SG Patient 44.4 % 25.9 % NA

Average Patients 36.0 % 16.6 % –
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4. Conclusion
Despite their growing presence in home computer applications and various telepho-
ny services, commercial automatic speech recognition technologies are still not eas-
ily employed by everyone, especially individuals with speech disorders. ALLSpeak 
is an App designed for Android equipped smartphones and tablets that allow ALS 
patients to go on communicating with the rest of the world, both when speaking 
becomes an effortful task and when their voice intelligibility almost vanishes. The 
first version of our algorithm running on the App was based on a DNN trained on 
non-dysarthric speech. This recognizer had an averaged command error rate ranging 
from 32.7% to 17.8% using temporal and spectral FBANKS respectively and from 
32.7% to 24.9% using temporal and spectral MFCC for dysarthric speech. With
the aim of improving the recognizer performance, we explored a further method: 
the sequence-to-sequence LSTM model. We observed that the best performance is 
accomplished by applying the speaker adaptation, providing an averaged command 
error rate of 15.0% over all 7 speakers, and 16.6% over the 5 patients. In order to 
compare the DNN and LSTM models, we analyzed the results related to the com-
mon tested speakers. What we found is an averaged error rate difference of 19.4%, 
showing that the LSTM model trained in a sequence-to-sequence fashion is a more 
suitable tool to address the dysarthric speech recognition. Thus, the following step 
will be the integration of this method to the mobile application. Our belief is that, 
by using our AllSpeak application, people with speech disorders will have the op-
portunity to participate in the technology present and experience the benefits of 
smartphones which are powerful devices able to mitigate their disabilities.
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