
DOI: 10.17469/O2104AISV000017

PAOLO BRAVI

Prosit: a Praat plug-in for the search and inspection
of corpora of annotated audio files

The paper presents the Prosit software, a plug-in for Praat (Boersma, Weenink, 1992-2018),
one of the most renowned programs for carrying out phonetic research. The Prosit plug-in is
designed to help researchers in (i) making a flexible search on corpora of sound files with Praat
TextGrid annotations; (ii) building their own corpus by editing and managing sound files and
TextGrids; (iii) listening, visualizing, inspecting and analyzing sounds that match the search
criteria. The rationale behind the project is the observed use of different schemes in sound
annotation carried out via Praat, an instrument whose potential benefits allow searches to be
carried out on sound corpora built up with different approaches. The Prosit plug-in also makes
it possible to apply a number of either batch or single operations on the search outcomes.

Keywords: Praat plug-in, Praat search engine, TextGrid, sound annotations, sound visualization.

1. Introduction and motivation
The Praat TextGrid is a widely diffused format for storing information related
to audio files. In many cases audio file analysis needs previous manual or auto-
matic annotation of the sound files, so that the corpus on which the analysis
is carried out eventually comes to consist of a number of pairs of sounds and
TextGrids.

That said, a typical analytical batch procedure consists of iterating some kind
of procedure on all the files comprising the corpus, which are usually stored in
one directory and have a consistent annotation. But what happens if the “cor-
pus” – or a pre-version of it – is not (yet) built up using a consistent annotation
scheme or if we simply want to explore what could be large and non-homogene-
ous groups of annotated sound files as a possible preliminary step towards the
creation of a well-organized corpus?1

Prosit2 is a Praat plug-in designed to face this kind of need: on the one hand,
it is a search-engine (with no external dependencies) that allows step-wise flex-
ible research within possibly large and non-homogeneous groups of TextGrids,

1 “Standards are like toothbrushes, everyone agrees that they’re a good idea but nobody wants to use
anyone else’s” is a brilliant statement attributed to Murtha Baca that well synthesizes the difficulties
relevant to metadata definition and management (see Pomerantz, 2015: 65).
2 The name is an acronym for the Praat Object Search and SS Inspection II Tool. At the same time, not TT
without a hint of irony, it expresses the author’s wish to allow users to carry out a fruitful search and
successful work with TextGrids and audio files.

294 PAOLO BRAVI

while, on the other, it allows the user to either listen to, edit, visualize or analyze
the audio files that match the TextGrid interval(s) requested and save the rele-
vant output.3 The lack of a proper internal database management system and a
corresponding search engine has been noted in numerous cases.4 This is linked
both to the fact that Praat allows its users the freedom to develop their own
system of file management by means of its built-in scripting language (BIM:
scripting [1]5), and also because complex research on documents and relevant
metadata and annotations can be managed properly using a software specifically
designed for database management and information retrieval.6

In many cases, the workflow of researchers studying phonetics involves the
use of multiple software. A quite common procedure among researchers is to
carry out a first step of sound analysis and annotation using Praat, and then to
apply statistics and drawing relevant graphics with R (RDCT, 2011). Some spe-
cifically designed software has been developed so as to automatize and improve
interoperability between the two programs (Albin, 2014; Boril, Skarnitzl,
2016). Other programs designed for media file annotation which provide utili-
ties for corpus management and analysis are presented and described in Durand,
Gut & Kristoffersen, (2014, part III).7 The decision to avoid any dependency
in the Prosit plug-in clearly has its costs in terms of efficiency and entails a
number of limitations with regard to database systems explicitly designed for

3 To date, while pending comprehensive and exhaustive testing and the writing of documentation with
a detailed description of the available functions, the Prosit plug-in can be requested directly from the
author at the address paolobravi.gm@gmail.com.
4 The Praat command “Create Corpus…” described in Boersma, (2014) is conceived in view of pro-
viding important functions for corpus management and to overcome a previously observed limitation
of the program regarding the fact that “Praat does not include a proper database system as such, so
searching a speech corpus with Praat must be implemented through Praat scripts (which can become
painfully slow)” (Lennes, 2005: 15). The scope and functions of the Prosit plug-in here described only
partially overlap with those of the Praat in-built command.
5 The Praat built-in manual (BIM) will be constantly cited throughout the paper. For convenience,
the following method will be adopted to point the reader to the appropriate manual page (note: the
Praat version used is 6.0.39). In the Praat Objects window, under the Help section, use the command
Search Praat manual and then write the word given (in this case, the word “scripting”) in the form l
field. Then, from the list of outputted links, choose the entry indicated by the number within square
brackets (in this case, the entry is [1]). Hence, from now on, these references to the Praat manual will
have the following format: BIM: query [number].
6 Generally speaking, it has to be observed that DMS software based on relational databases, wherein
metadata are stored in a principled way, is far more flexible (though harder to design and maintain)
than what are known as flat file databases, which contain less strictly organized and more redundant
information with respect to the former (Srivastava, 2014; Elmasri, Navathe, 2016).
7 A comparison between functions provided in Prosit and those implemented in other software de-
signed for similar aims is beyond the scope of this paper. However, the interested reader should be
aware that among the programs that can read/import annotations in the TextGrid format and that
provide functions specifically designed for corpus analysis, a basic list of the most notable ones com-
prehends at least ELAN (Wittenburg, Brugman, Russel, Klassmann & Sloetjes, 2006), EMU-SDMS
(Winkelmann, Harrington & Jänsch, 2017), EXMERaLDA – in particular the EXAKT tool –
(Schmidt, 2002).

PROSIT: A PRAAT PLUG-IN 295

information storage and searches, but it does allow a Praat user to drive – so
to say – ‘his/her’ own car, managing data that are structured according to the
TextGrid format (BIM: TextGrid [2]), with which he/she is most likely to be
well acquainted.

2. User control and interfaces
Prosit is based entirely on the tools (types of objects, commands, etc.) and inter-
faces (editors, forms, windows) provided in Praat. Excluding external depend-
encies has its pros and cons: the most notable advantages are ease of installation
and use,8 since any Praat user with basic practice can use the program by utiliz-
ing its standard apparatus. Moreover, a Praat user with some knowledge and
experience with Praat scripting can change or add parts to the plug-in according
to his/her own needs.9 In terms of disadvantages, Prosit, being based on a linear
search mechanism, has not the efficiency necessary for the inspection of large
corpora. Moreover, there are some practical limitations related to the character-
istics of the interfaces and editors which, as part of the Praat GUIs, cannot be
overcome as of yet.

User control of the parameters involved in any operation provided by Prosit
is carried out on the typical Praat forms. In many cases they appear in sequence,
based on the user’s choices, and are implemented by means of the “beginPause
/endPause” mechanism for user control (BIM: user [1]). Instead, search report
and relevant Prosit commands are managed via “ManPages” that are dynamical-
ly created whenever a new search starts and at every step of the search (BIM:
manpages [1]).

3. Search: the metaphor of a shopping trip
Searching intervals in Prosit come about in three phases. For ease of concep-
tualization, these phases are identified using the metaphor (and the relevant
names) of a shopping trip. In phase 1, the user sets what is called the district,
viz a directory (as a “simple” or “parent” one), and a store type, viz a file type ca-
pable of storing information relevant to an audio file. At the moment, the only
searchable file types are Praat TextGrids, but searches within other file types can
be envisaged in a future version of the plug-in. In phase 2, the user sets the shelf
(or the shelves) that Prosit has to explore. When the store type is “TextGrid”,

8 The plug-in can be installed following the simple instructions contained in the relevant page of the
Praat built-in manual (BIM: plug-ins [1]).
9 Praat has a built-in introduction to the program (Help > Praat intro) and a detailed explanation of
its scripting language (Help > Scripting language). Furthermore, several tutorials on the use of the
Praat program are available, written in various languages and with a variety of reader proficiency and
topic focus in mind. Among those written in English, a certainly non-exhaustive list comprises van
Lieshout, 2017; Styler, 2017; Weenink, 2018; Wood, 1994-2018; Cangemi, Auris, submitted.

296 PAOLO BRAVI

this means identifying the tier(s) that will be searched through. A spectrum of
possibility is provided to establish which tiers are to be searched in. In phase 3,
the user eventually sets the item(s) he/she is interested in.

Search results, together with a description of the research carried out, is
made available to the user by means of Praat “ManPages” that allow the user
to perform a number of different operations. These range from listening to the
specified part of the sound, visualizing it through specific animation devices
(also playing it at a speed lower than the original) and editing and manipulating
it. It is also possible to perform a number of batch operations on all items.

Searches can be carried out in different steps. Users can add new items via a
new search, refine the preceding search, retain or exclude selected items through
successive steps. Every search step and relevant parameters and results are eas-
ily available at every moment, so that the overall search can also take different
paths according to the researcher’s needs.

3.1 Search phases

The paragraphs in this section describe each of the three search phases.

3.1.1 Phase 1: “District”
After the plug-in installation, a button named “Prosit” will appear in the Praat
Object window under the “Praat” menu. Clicking on this button gets the search
underway. The first form that appears regards the district where a definedt store
type is searched for – at the moment, as mentioned above, the only manageable
information “stores” are of the TextGrid type. Two main options are available in
this search phase. The first one allows the user to specify one of the three ways
of stating the directory to be searched for: [a] choosing by browsing; [b] choos-
ing among the last directories searched10; or [c] stating the directory address
explicitly, either writing it manually on a form or choosing from a pre-set list of
directories that the user can easily create or modify in advance.11

The second parameter allows the user to state the ‘complexity’ of the search,
i.e. the number of levels of ‘child directories’ to be searched for beyond the main
(‘parent’) directory. By default, this parameter is set to “complex” (i.e. the search
will involve not only the directory chosen, but the ‘child’ directories contained in
it) and “unlimited” (i.e. the search will proceed until no further ‘child’ directory is
found). Users are allowed to either choose a “simple” search, i.e. a search limited to
the directory stated, or to specify, when a “complex” search is chosen, a number cor-
responding to the levels of ‘child’ directories to be searched for (see Figure 1). This

10 The number of directory addresses held in the memory is set to ten by default. This number may be
modified according to the user’s preferences.
11 The list of pre-set directory addresses is stored in the file plugin_PROSIT/lists/Others/
SearchDirOM_Input.txt. Each user will set his/her list of preferred addresses according to his/her
own needs.

PROSIT: A PRAAT PLUG-IN 297

flexibility allows the search to be restricted or widened according to specific needs
and to manage every possible different organization of file storage.

Figure 1 – Sketch of the first phase of the search:two basic options (“Simple” and “Complex”) are
available and, in the latter case,a definite number of “child” directory levels can be set by the user

3.1.2 Phase 2: “Shelf ”
The second phase of the search is aimed at deciding which shelves, i.e. what type
of annotations, are to be searched for. Dealing with ‘stores’ of annotations like
TextGrids, ‘shelves’ are – outside the shopping metaphor – tier names. There
are three possible ways of searching through them. The first method is to look
up TextGrid tiers whose name matches a given string according to a specific
chosen string-matching criterion.12 The second method is to choose a tier name
from a list comprising all tier names available in the TextGrids found in the
first phase of the search. The third method envisages carrying out a search in
all the tiers of the TextGrids. It goes without saying that the search may take
longer with this third option, and that it could possibly yield a vast number of
non-consistent results. In all cases the user can decide about the case-sensitive-
ness of the string search.

12 The following series of options are available: “is equal to”, “is not equal to”, “contains”, “does not
contain”, “starts with”, “does not start with”, “ends with”, “does not end with”, “matches (regex)”. The
last option, of course, permits much wider search flexibility, but requires a knowledge of how Praat
manages regular expressions (see BIM: regular [1]).

298 PAOLO BRAVI

If what is looked for is to carry out a search through two or more, but not
all tiers, two options are available. The first way is to use the “match (regex)”
option, which allows the search to be made in a single step. The second way is to
carry the analysis through different steps, using the ADD method. For example,
if one needs to find all non-empty intervals in tiers whose names contain either
the text “Profilo” or the text “Strut”, the user can either: (i) perform the search
in one step, using the “match (regex)” option and writing “Profilo|Strut” in the
search text field; or (ii) perform the search in two steps, using the “contains” op-
tion and writing “Profilo” in the search text field, and then repeating the option,
after selecting the ADD method, searching for the text “Strut”.

3.1.3 Phase 3: “Items”
The third phase of the search is aimed at deciding which item, i.e., beyond the
metaphor, what label is to be searched for. Two out of the three methods de-
scribed in paragraph 3.1.2 for searching through tier names are also available
for labels. This means that it is possible (i) to set a string which matches the
annotations according to one of the established matching patterns (see note 12)
by writing it manually in the form, or (ii) to choose the string to be searched for
from a predefined list. A third method is available for searching through labels,
that is (iii) choosing a label from a list of all the ones actually present on the
“shelves” – i.e. in the tiers – retrieved in phase 2.

One of Prosit’s crucial and potentially beneficial aspects is the possibility of
choosing different ways to define the strings to be searched for in the TextGrid
annotations, along with the flexibility offered by the chance to choose between
various matching criteria, which also comprises the opportunity of using regu-
lar expressions. In particular, the method (iii), based on a preliminary examina-
tion of the annotation present in the selected tiers, may be useful in a prelimi-
nary phase of inspection of the corpus of TextGrids.

3.2 Search steps

Searches can be carried out in more steps, i.e. new directives may be given to
modify the outcome of previous search steps. Each step (with the exception
of the first one) can operate on the results of the previous steps in four modes.
The first mode is addition (symbol: “ADD”). In this mode, new items are add-
ed which match the new directive criteria. This method is by rule adopted in
the first search step. The second mode is refinement (symbol: “REF”). In this
mode, items found in previous steps of the research are held if the outcomes
also match the new search directive. The third mode regards selections (sym-
bols: either “KIS” or “DOS”). In this mode, items selected by the user are either
excluded (symbol: DOS – drop off selected items) or served, with exclusion of
the non-selected one (symbol: KIS – keep in selected items). The fourth mode
regards item reduplication (symbols: UNI). In this mode, two (or more) items

PROSIT: A PRAAT PLUG-IN 299

that refer to the same sound part outcoming from different directives are syn-
thesized as a single item.

Figure 2 – Prosit multiple search step method allows the user to conduct an inspection
of the annotated sounds using different types of filter at each step

The mechanism has been conceived with the aim of allowing the user great
search flexibility, making it possible to rethink and carry out multiple tries dur-
ing the search process. The Manpage interface makes it easy to pass from one
search step to another and to account for the procedures involved in each step.

4. Inspection, editing, actions
Search results are reported at every step by means of Praat ManPages which
are organized in three sections (see Figure 3a-b). The first section (“Search de-
tail”) gives a summary of the parameters used in each research step. In particu-
lar, it reports the filter type used (see Paragraph 3.2), the “district” where the
search was carried out, the “store” type searched for (as of yet, the fixed type
is “TextGrid”), the “shelf ” (as of yet, string values referring to TextGrid tier
names) and the query, as expressed in the three search phases outlined above.
The second section (“User activity”) contains a series of subsections that allow
the user to improve or change his/her search and to ‘navigate’ in the various
steps of his/her search and may also help him/her in building a corpus and using
the search for specific aims (see below, par. 4.1). The third section (“Search re-
sults”) lists the outcomes of the search. Each item is accompanied by three sub-

300 PAOLO BRAVI

sections. The first (“Filters”) reports a short summary of the search matching.
The second (“Time”) gives time details. The third one (“Operations”) provides
a list of words (or sentences) linked to the plug-in scripts that allow the user to
listen, view and edit the sound through the Praat Sound & TextGrid editor, to
select or deselect the item and to operate with various types of editor providing
animation for sound visualization and manipulation (see par. 4.2). From here
on, these links that appear in bold blue characters on the ManPages (see figs.
3a-b) will be referred to as “WL”.

Figure 3a – Example of a two-step search - step 1: the search directive 1 looks up into a parent
directory (in this case, the built-in “test” one) for TextGrids comprising tier names that

contain the string “R0-tierTc” and looks in these tiers searching for labels matching the regular
expression “1|[3-5]” (85 items are found)

Figure 3b – Example of a two-step search - step 2: the directive 2 refines the retrieving adding
a sec-ond condition: labels that do not contain the string “a” or “A” are searched for in tiers

whose name is equal to “R2-LIN-VV-PT” (100 items are found)

PROSIT: A PRAAT PLUG-IN 301

4.1 Batch operations

Prosit allows operations to be carried out in batch mode on the items result-
ing from retrieving. In the “user activity” paragraph, a number of operations
are available that can be of use when dealing with (or building up) a corpus.13

Among these, two sub-sections are available in the “Utilities” section. The first
is accessible via the WL “Rename”, which opens a pop-up form that allows the
establishment of some parameters relevant for batch tier rename in all the files
matching the search criteria.14 The second may be reached through the WL
“Analyse”, which allows the resulting pitch in the part of the sound output from
the search on the annotation to be extracted (and saved). In the “Actions” sec-
tion, the user can “Examine” in a synthetic way the output of his/her search: by
virtue of the Praat function “Concatenate recoverably” (see BIM: concatenate
[2]), the user can listen to all the sounds in sequence, aligned in a single file
with an accompanying TextGrid where each label indicates the origin of each
portion of sound present in the chain. Other batch operations are accessible un-
der the WL “Save”, particularly as far as TextGrid and Sound file are concerned.
Either TextGrid or Sound parts relevant to the retrieved intervals can be saved,
with different options relevant to amplitude peaks and audio format. The WL
“Print” offers three possibilities: waveform, pitch contour and pitch histogram
of retrieved items can be printed, with a number of parameters relevant to each
type of graph (see figs. 4a-c).

Figure 4a - Batch operation on outcomes from search: printing of waveform excerpt

13 In this paper, only a brief summary of the operations that may be carried out on the retrieved items is
provided. A detailed description of these functions will be given in a future contribution.
14 This may be of help when TextGrid files are not stored in just one directory or when they have differ-
ent tier names since they are part of different collections of files, whereby tiers are annotated according
to non-homogeneous rules and/or in the light of different aims. Obviously, the user is asked to decide
whether to overwrite the original TextGrid files or to save the new ones in a separate place.

302 PAOLO BRAVI

Figure 4b - Batch operation on outcomes from search: printing of a pitch contour excerpt

Figure 4c - Batch operation on outcomes from search: printing of a histogram of pitch values
(bins = 10 cents) found in the contour excerpt

4.2 Single item operations

Items resulting from user retrieving are described in terms of their match to the
search directive(s) and their time features (see above, Paragraph 4 and Figures 3a-b).
A series of operation may be carried out on each item. Firstly, each sound segment
can be quickly listened to via a pair of WLs named “Play” and “Stop”. Secondly,
the “View & Edit” WL allows access to the Praat TextGrid Editor with the time

PROSIT: A PRAAT PLUG-IN 303

boundaries relevant to the item, thereby accessing all commands available in this
editor. This WL makes it possible to visualize just the tier searched for or all the
tiers actually present in the TextGrid, and also to observe in which context the re-
trieved annotation is placed. Thirdly, another pair of WLs (“Add to selection” and
“Remove from selection”) allow the list of selected objects to be managed in the
light of further search steps or batch operations. Fourthly, the WL “Vis” allows the
user to visualize and/or manipulate the sound relevant to each item in either of the
following two ways: either via (i) the “ConVis” panel or (ii) the Praat Manipulation
Editor. The (i) ConVis panel is an application designed within Prosit on the Praat
Demo Window with the objective of visualizing, through an animation, the evo-
lution of the pitch contour (either at normal speed or delayed up to 4 times the
original length) on top of the spectrogram and above a TextGrid tier relevant to the
item indicated by the user (see Figures 5).

Figure 5 – Single item operation: dynamic visualization of the pitch contour excerpt

‘Visualization’ via (ii) the Praat Manipulation Editor is actually much more than
a means to visualize sounds. In fact, this kind of editor permits each sound to be
manipulated through pitch stylization and/or modification and duration changes
(detailed information on the use and functionalities of this editor are in BIM, ma-
nipulation [1]).

5. Conclusions
The plug-in Prosit is at its first steps. This is obvious to the potential user who will
find some “one-option menus” that, at first sight, do not seem to have any meaning.
In most cases, this single-choice (i.e. pseudo-) menu is part of the lists of commands
that are under elaboration or which have yet to be properly tested. However, even
at this early stage, Prosit contains a basic infrastructure that allows future develop-

304 PAOLO BRAVI

ments along lines that are the same (or analogous) to the ones that have already been
set and are in use.

Future developments may regard different parts of the plug-in. In particular,
three aspects could be improved or developed to better suit prospective user needs.
The first one is to widen the range of possibilities of the search engine, which might
look in “stores” other than TextGrids, in particular allowing searches on different
metadata sets conceived according to standard procedures.15 The second one is to
enlarge the number of available batch operations, either aimed at helping in the
constitution of a specific corpus or at managing and analyzing data and sounds re-
sulting from the search. The third one is to provide other ways of fostering inspec-
tion capacity, of editing single items and of analyzing and visualizing the acoustical
features of the relevant sound files.

Acknowledgements
I wish to thank Ignazio Macchiarella, Francesco Capuzzi and Francesco Cangemi
for their support and advice.

Bibliography

Albin, A. (2014). PraatR: An Architecture for Controlling the Phonetics Software “Praat”
with the R Programming Language. In Journal of the Acoustical Society of America, 135(4),
2198.
Boersma, P. (2014). The Use of Praat in Corpus Research. In Durand, J., Gut, U. &
G. Kristoffersen (Eds.), The Oxford Handbook of Corpus Phonology. Oxford: Oxford
University Press, 342-360.
Boersma, P., Weenink, D. (1992-2018). Praat: Doing Phonetics by Computer. http://
www.fon.hum.uva.nl/praat / Accessed 15.04.18.
Boril, T., Skarnitzl, R. (2016). Tools rPraat and mPraat. In Sojka, P., Horák, A.,
Kopeček, I. & Pala, K. (Eds.), Text, Speech, and Dialogue: 19th International Conference,
TSD 2016, Brno, Czech Republic, 12-16 September 2016,66 367-374.
Cangemi, F., Auris, B. (submitted). Praat Handbook. Berlin: Language Science Press.
Durand, J., Gut, U. & Kristoffersen, G. (Eds.) (2014). The Oxford Handbook of
Corpus Phonology. Oxford: Oxford University Press.
DCMI Usage Board (2012). DCMI Metadata Terms. http://dublincore.org/docu-
ments/dcmi-terms / Accessed 15.04.18.

15 Neither a unique standard or framework, nor a general agreement exists on how to describe the con-
tents and characteristics of digital audio files. Based on the current diffusion of metadata sets and on
the main area of research activity of the Prosit developer, the possibility of searching for Dublin Core
(DCMI Usage Board, 2012) and BDI (ICCD, 2007) metadata can be envisaged in a version- to- come
of the plug-in. For a general survey on the conception and use of metadata in linguistic corpora, see
Durand, Gut & Kristoffersen, 2014 (part I).

PROSIT: A PRAAT PLUG-IN 305

Elmasri, R., Navathe, S.B. (2016). Fundamentals of Database Systems (7th edition).
Boston: Pearson.
ICCD (2007). Scheda BDI. Beni demoetnoantropologici immateriali versione 3.01 -
Struttura dei dati e normativa di compilazione unificata e integrata - gennaio 2007. http://
www.iccd.beniculturali.it/getFile.php?id=284 / Accessed 15.04.18.
Lennes, M. (2005). Hands-on Tutorial: Using Praat for Analysing a Speech Corpus.
http://www.helsinki.fi/~lennes/vispp/lennes_palmse05.pdf / Accessed 15.04.18.
Pomerantz, J. (2015). Metadata. Cambridge MA – London: The MIT Press.
RDCT (2011). R: A Language and Environment for Statistical Computing. http://ww-
w.R-project.org / Accessed 15.04.18.
Schmidt, T. (2002). EXMARaLDA – ein System zur Diskurstranskription auf dem
Computer. In Arbeiten zur Mehrsprachigkeit, B(34), 1-23.t
Srivastava, R. (2014). Relational Database Management System. New Delhi: New Age
International Private Limited.
Styler, W. (2017). Using Praat for Linguistic Research. http://savethevowels.org/praat /
Accessed 15.04.18.
van Lieshout, P. (2017). PRAAT Short Tutorial – An introduction. https://www.re-
searchgate.net/publication/270819326_PRAAT_--_Short_Tutorial_--_An_introduction
/ Accessed 15.04.18.
Weenink, D. (2018). Speech Signal Processing with Praat. http://www.fon.hum.uva.nl/
david/sspbook/sspbook.pdf / Accessed 15.04.18.
Winkelmann, R., Harrington, J. & Jänsch, K. (2017). EMU-SDMS: Advanced
Speech Database Management and Analysis in R. In Computer Speech & Language, 45, 392-
410.
Wittenburg, P., Brugman, H., Russel, A., Klassmann, A. & Sloetjes, H. (2006).
ELAN: a Professional Framework for Multimodality Research. In Proceedings of LREC
2006, Fifth International Conference on Language Resources and Evaluation, Genoa, IT, 22-
28 May 2006, 1556-1559
Wood, S. (1994-2018). Introduction to Praat. https://swphonetics.com/praat/introduc-
tion / Accessed 15.04.18.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20160403011439
 680.3150
 17x24
 Blank
 481.8898

 Tall
 1
 0
 No
 748
 146

 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 14
 13
 14

 1

 HistoryList_V1
 qi2base

