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Collection and analysis of multi-condition audio 
recordings for forensic automatic speaker recognition

The major aim of the project presented here is to compile a corpus from real case recordings 
to validate more recording conditions and languages under match and mismatch conditions 
for forensic automatic speaker recognition (FASR). The challenges and limitations of 
compiling a real case corpus are explained. First results of validation tests are presented for 
male speakers of German in the match condition [voice message – voice message] as well as 
in the mismatch condition [voice message – telephone]. Results for the match condition 
[voice message] are compared to previous findings for the match condition [telephone]. 
Variations of performance metrics such as Equal Error Rate (EER) and log-likelihood-
ratio cost (Cllr) are discussed with respect to effects of normalisation and calibration, and 
patterns of score distributions are analysed using Tippett plots.
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1. Introduction
The present paper outlines a research project aiming to validate forensic automatic 
speaker recognition (FASR) systems by using real forensic audio recordings. 
With the improvement of FASR systems over the past two decades, the use of the 
automatic approach as an element alongside auditory and/or acoustic analysis in 
speaker comparison casework has increased significantly worldwide (Gold, French, 
2019). Both the auditory-acoustic approach and FASR are based on Bayesian 
principles in assessing similarity and typicality ( Jessen 2018; Rose 2002 for the 
foundations of Bayesian statistics and the likelihood ratio in forensic speaker 
comparison). However, while FASR generates a quantitative strength-of-evidence 
outcome (likelihood ratio), the auditory-acoustic approach produces a more 
qualitative outcome. Combining both approaches would therefore increase the 
level of information when expressing conclusions.

Validating (i.e. testing) FASR systems is necessary to assess the case-specific 
strength of evidence given the specific case condition material (Drygajlo, Jessen, 
Gfroerer, Wagner, Vermeulen & Niemi, 2015: 17; Morrison, Enzinger, Hughes, 
Jessen, Meuwly, Neumann, Planting, Thompson, van der Vloed, Ypma, Zhang, 
Anonymous & Anonymous, 2021). So far, only a limited proportion of common 
forensic scenarios in cases submitted to the German Federal Criminal Police Office 
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(Bundeskriminalamt, BKA) has been validated, i.e. [telephone]1 conversations of 
male speakers of German. Accordingly, the rate of FASR application in casework is 
low. Within the last 15 years only 10-20% of conducted speaker comparison cases 
at the BKA have met the requirements for FASR application. These requirements 
include sufficient recording quality and quantity of speech, and consistency in 
terms of spoken language and recording condition. Over the last five years, the 
percentage of FASR-treated speaker comparison cases actually decreased. Possible 
reasons for the reduction could be the change in submitted recording material from 
predominantly [telephone] recordings to different types of recordings (e.g. voice 
messages, videos, interior surveillance). The vast majority of scenarios, i.e. languages 
and recording conditions, and in particular the various combinations of mismatch 
situations, have not been tested yet. The present research project starts to fill this 
gap by compiling a corpus consisting of speakers of various languages and recording 
conditions in match and mismatch settings.

However, given the vast number of potential combinations of mismatch scenarios 
that forensic speech experts might face, the present project is merely a starting point. 
The collection of real forensic audio recordings needs to be continuously expanded 
to fully exploit the capability of such a real case corpus. Due to restrictions in data 
availability and data access this remains the main challenge for validating FASR on 
real forensic audio recordings.

2. Mismatch conditions and unfamiliar match conditions
Mismatch factors can be manifold. Kelly, Hansen (2021) subdivide (1) extrinsic 
and (2) intrinsic factors, which are either (1) speaker-independent (e.g. background 
noise, transcoding effects, channel characteristics, recording devices) or (2) speaker-
dependent (e.g. emotional or stylistic variation, vocal effort, short- or long-term 
voice fluctuations as in the case of a cold or ageing effects). Due to this diversity, 
more than one mismatch factor can appear at the same time, leading to ‘multi-
mismatch’ scenarios. In fact, multi-mismatch is inevitable in forensic speaker 
comparison cases and, furthermore, the ground truth of many mismatch factors, 
such as transcoding history, recording hardware and software, date of origin, can 
only be estimated.

Previous FASR studies investigated the effects of individual types of mismatch 
using controlled and/or manipulated data (e.g. Nash, 2019; Kelly, Hansen, 2021). 
Such simulated test corpora are necessary to arrive at generalisations as the data’s 
ground truth is known and potential further factors can be kept as similar as 
possible to investigate only one factor at a time. Factors which have been studied 
so far include but are not limited to: mismatch in spoken language (Künzel, 2013), 
mismatch in time span between recordings of interest (Morrison, Kelly, 2019), 
mismatch in acoustics (net speech duration, signal-to-noise ratio, reverberation, 

1 In this paper, the conditions tested using FASR are listed in square brackets.
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frequency bandwidth and transcoding) (Nash, 2019), mismatch in recording 
device (van der Vloed, Kelly & Alexander, 2020) and mismatch in vocal effort 
(Kelly, Hansen, 2021).

Nash (2019) studied the effect of net duration on discrimination performance 
and found that lower net duration led to lower same-speaker (subsequently 
abbreviated as SS) scores and higher different-speaker (DS) scores, while system 
accuracy decreased (p. 126). Testing the effect of net duration in match and mismatch 
conditions using an i-vector/PLDA system he found that down to a performance 
tipping point of 10 seconds the discrimination performance decreased gradually. 
Net durations below 10 seconds, however, resulted in an exponential performance 
degradation. Mismatch in net duration does not seem to have an impact on the 
Equal Error Rate (EER), i.e. discrimination performance was not systematically 
improved by matching the net duration of the recordings to be compared. 
According to Nash’s results, EERs increased when net durations decreased from 
25s, over 20s to 10s, even though they matched in duration for each of these steps. 
But, for example, having a pair of recordings with one of them 10s long and the 
other 30s (duration mismatch) led to better average performance than matching 
both recordings at a value of 10s. Duration might be the only variable that behaves 
in this manner. Usually, a mismatch in conditions led to poorer performance than 
a match. For example, a mismatch between noise-free and noise-degraded speech is 
worse than a match between two equally noise-degraded recordings.

Beyond mismatch, a further issue is the behaviour of “unfamiliar” match 
conditions. The classifier “unfamiliar” refers to types of intrinsic factors, 
extrinsic factors, or combinations of the two which are scarcely represented in 
the literature and have not been sufficiently tested yet (at the BKA, Israel Police 
or other forensic services). In contrast to mismatch, here conditions are matched 
but unfamiliar (i.e. same but unfamiliar condition for the questioned speaker as 
well as for the suspected speaker). Forensically, the question arises whether a test 
(validation) that has been conducted for Condition A also applies to Condition 
B, i.e. whether the results for the two conditions are very similar (e.g. Solewicz, 
Jessen & van der Vloed, 2017 for strong similarity between a Dutch-based 
and a German-based test), or whether at least some process of interpolation or 
extrapolation can be applied in order to bridge the two (Morrison, Kelly, 2019 for 
an example of interpolation).

To give an example of unfamiliar match conditions, Nash (2019) investigated 
the effect of transcoding using controlled data of twelve different codec types 
with various settings. Lossy codecs in particular, relying on psychoacoustic 
compression, influenced the discrimination rate considerably and increased the 
rate of false rejections and false acceptances (p. 264). Formats typically involved 
are MP3, M4A and AAC. Nash hypothesised that recordings from the same 
codec would artificially increase discrimination performance due to a match 
in channel characteristics (p. 256). This means that a match among unfamiliar 
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conditions might lead to overconfident results – a pattern that will become 
relevant in this study.

A recent study on both mismatch and unfamiliar match conditions was carried 
out by Kelly, Hansen (2021). They studied the impact of vocal-effort variation 
using [whisper], [Lombard] speech and [neutral] speech to assess mismatch 
in vocal effort. They found, using an x-vector system, that both mismatch 
conditions [whisper – neutral] and [Lombard – neutral] lowered discrimination 
performance; however, more so when [whisper] was involved (EER of ≈ 20%) 
rather than [Lombard] speech (EER of max 3.62%). Considerably better 
discrimination performance was found for [non-neutral] match comparisons, i.e. 
[whisper – whisper] (EER of max 7.36%) and [Lombard – Lombard] (EER of 
max 2.12%). Thus, the match conditions in vocal effort – even though they are 
based on [non-neutral] speech – outperformed the mismatch situation.

The above studies allow the effects of individual factors to be assessed 
under controlled conditions. However, given that controlled data produce very 
homogeneous scenarios, the results obtained should be considered as more 
optimistic than expected for typical forensic scenarios in which factors of interest 
do not occur in isolation. Therefore, as Drygajlo et al. (2015: 17) demanded, 
FASR systems need to be validated using corpora that match casework conditions, 
if possible, by using available data from previous casework. In the casework-
based paper presented here, the mismatch condition was [voice message] against 
[telephone] communication and the “unfamiliar” match condition was [voice 
message]. For the mismatch condition it is interesting to see how performance 
changed (probably decreased) relative to a [voice message] match condition. 
For the match condition based on [voice message] data, a comparison was made 
to a previously used [telephone] interception corpus (Solewicz et al. 2017) and 
the question was whether performance is similar in these two match condition 
datasets. “Performance” not only concerns speaker discrimination or calibration 
values, but also the actual distributions of the scores in Tippett plots, which are 
expected to reveal further interesting patterns.

3. The FORBIS project
The FORBIS project (short for Collection and analysis of recordings for FORensic 
BIometric Speaker recognition) is a research project funded by the EU Internal 
Security Fund and was conducted at the BKA from March 2019 to August 
2021. The project’s main goal was to compile a corpus of recordings suitable for 
FASR validation tests to enable the application of FASR for additional recording 
conditions and further spoken languages beyond the hitherto focus on German 
telephone data. The basis for the compilation of the corpus was the archive of 
the BKA section ‘Text, speech and audio’, from which suitable recordings were 
collected. In addition, other BKA divisions were asked to provide real forensic 
audio and video material from investigative proceedings.



COLLECTION AND ANALYSIS OF MULTI-CONDITION AUDIO RECORDINGS 61

3.1 Corpus limitations

Potential extrinsic and intrinsic factors, causing multi-mismatch, should be 
considered when compiling a corpus based on real case recordings. The following 
list shows some examples of relevant factors (for a more complete collection see 
Hansen, Bořil, 2018).
Extrinsic factors:
– Recording quantity: net speech duration
– Recording quality: effects of recording and transmission procedures, i.e. linear 

and non-linear distortions
– Background noise, e.g. traffic, babble, wind noise
Intrinsic factors:
– Emotional state
– Speaking style
– Vocal effort
– Time span between recordings

Because the actual basis, i.e. the ground truth, of many factors remained 
unknown (e.g. how the recording was transmitted exactly, or if a speaker was 
indeed emotional), evaluating the impact of individual factors was complicated. 
Further difficulties were caused by various imbalances, namely the number of 
recordings per speaker, the number of speakers per recording condition (e.g. 
telephone intercept, voice message) and the number of speakers per language. As 
for any collection of forensically authentic recordings, there was also a remaining 
uncertainty about speaker identities, i.e. correct assignment of SS and DS status in 
the validation dataset.

3.2 Corpus compilation

Only recordings of male speakers were collected. In addition to German, the 
languages Arabic, Turkish and Russian most frequently appeared in casework at the 
‘Text, speech and audio’ section of the BKA in recent years and thus were included 
in the corpus. Typically, the following four recording conditions were submitted 
for speaker comparison purposes and thus required validation tests: [telephone] 
interception, [voice message], [video] and [interior surveillance] (both indoor and 
car surveillance). To prevent the dominance of a few speakers, the maximum number 
of recordings per speaker was limited to six recordings per language and condition. 
In general, the aim for the corpus was to arrive at a minimum of 20 speakers for 
each language and recording condition. In addition to the recordings collected for 
creating a test set, matching reference populations were needed for normalisation 
purposes within the FASR system used (addressed in § 4). The aim was to collect 
30 additional speakers with one recording per speaker for each language and each 
recording condition.
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4. FASR system and performance testing
The FASR system VOCALISE (VOice Comparison and Analysis of the LIkelihood 
of Speech Evidence) Version 2.7 (Kelly, Forth, Kent, Gerlach & Alexander, 2019a 
for further information) was used to conduct the speaker recognition tasks (i.e. 
speaker comparisons) based on Mel Frequency Cepstral Coefficients (MFCCs). 
Pre-tests showed that the state-of-the-art x-vector PLDA system based on DNN 
embeddings outperformed the previous i-vector PLDA system. According to 
recommendations by the developers x-vectors were supposed to improve system 
performance under mismatch conditions and when degraded recordings were 
used. The results presented here were taken from the x-vector system only. Bio-
Metrics Version 1.8 was used for examination of the system’s discrimination and 
calibration performance (Equal Error Rate, EER, and log-likelihood-ratio cost, 
Cllr), visualisation of the score distributions (Tippett plots), implementation of 
cross validation calibration (CV) and Zoo plots.

Various system options were tested individually as well as in combination, 
revealing the system’s raw scores [-norm, -CV], normalised scores [+norm, -CV] 
as well as calibrated scores for both, raw scores [-norm, +CV] and normalised 
scores [+norm, +CV]. “Score Normalisation” (henceforth “normalisation”) was 
applied using S-norm (symmetric normalisation, Shum, Dehak, Dehak & Glass, 
2010). The details of the normalisation procedure in VOCALISE are described in 
Kelly et al. (2019a). Essentially, the recordings used in the test were compared with 
recordings of a set of speakers unrelated to the test data but with equivalent speaking 
conditions. Means and standard deviations of the score results of these comparisons 
were calculated and used to shift the score result of each comparison in the test. 
Generally, normalisation has the effect of improving discrimination performance to 
some extent, which is the main motivation for its use.

Calibration was applied using logistic regression cross validation calibration. 
Calibration has the goal of turning the raw scores into interpretable likelihood 
ratios, which means that if expressed in terms of LLR (log likelihood ratios) 
values larger than zero are typical for SS comparisons and values smaller than 
zero are typical for DS comparisons. The logistic regression calibration technique 
calculates shift and scale parameters from a calibration dataset and applies them to 
the scores. Cross validation is a “leave-one-out” method. The same corpus is used 
both for training the calibration parameters and for testing, but the speaker(s) 
involved in each comparison cycle is/are removed from the training set. For 
further literature on EER, Cllr, Tippett plots, logistic regression calibration 
and the cross validation principle see van Leeuwen, Brümmer (2007), Morrison 
(2011), Morrison (2013) and Drygajlo et al. (2015).

5. Speech data
Validation tests were performed on recordings of German speakers in the match 
condition [voice message], as well as in the mismatch condition [voice message – 
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telephone] interception. Available material gained from the FORBIS corpus was fully 
exploited. The material used for the tests is summarised in Tab. 1. The target criteria 
for the number of speakers could be met for the match condition (20 speakers), but 
not for the mismatch condition. Only recordings of 7 speakers could be collected 
in both conditions: [voice message] and [telephone] interception. For the reference 
population, recordings of 15 additional speakers from the [voice message] condition 
could be collected. For the mismatch condition, recordings of another 15 speakers 
from [telephone] interceptions were used. Consequently, the reference population 
for the mismatch condition was balanced for both conditions, as is the recommended 
procedure when using S-norm under mismatch conditions.

5.1 Pre-tests

Transcoding formats based on psychoacoustic compression (e.g. MP3, AAC) 
are known to degrade discrimination performance using controlled data (Nash, 
2019). Pre-tests confirmed these results. Recordings transcoded in MP3 or AAC 
format produced some outliers. The OPUS format, also available in high quality, 
did not show such an effect. However, this impression is based on only 23 OPUS 
files in the match corpus and 6 OPUS files in the mismatch corpus.

Originally, the corpus creation aimed at maximising the number of speakers 
and the number of recordings per speaker. Therefore, a rather permissive selection 
process was applied in terms of suitable recording formats, recording quality and 
neutral speaking style. Accordingly, the system performance in terms of EER of 
the original test set was quite poor.

The following types of recording degradations were identified in the pre-
tests as causing lower system performance and were therefore removed from the 
test set:
– Reduced frequency bandwidth
– Unsteady sound pressure level, i.e. clipping and reduction
– Data loss due to transcoding
– Non-neutral speaking style, e.g. emotional, fatigue, intoxicated
The exclusion of recordings was based on auditory and acoustic examination. 
Despite excluding poor and non-neutral recordings, the compiled test set (Tab. 1) 
still contained different kinds and degrees of degradation causing random effects of 
mismatch. This, however, is typical of casework data.

For data used in the mismatch test, a slight tendency was observed that there 
was a greater proportion of quality degradation in the [voice message] recordings 
than in the [telephone] recordings. The quality degradations were in-vehicle noise, 
background speakers and reverberation, all of which were either absent or present 
to a lower degree in the [telephone] recordings. This tendency will become relevant 
when interpreting the results.

The recordings compiled for the test sets also underwent a screening process 
using Zoo plots (see Dunstone, Yager, 2009). In the data set intended for the 
mismatch test, one outlier in the form of a “phantom” was observed. Phantoms are 
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speakers that show an unusually low similarity (in terms of LLRs) when compared 
to other speakers and also when compared to themselves, i.e. across recording of 
the same speaker. That phantom-type speaker was the only one among the seven 
who was classified as non-normal in the Zoo plots; this status stayed the same 
across the four conditions [-norm, -CV], [-norm, +CV], [+norm, -CV] and 
[+norm, +CV]. Rather than excluding that speaker from analysis altogether, two 
separate types of tests were performed, one in which that speaker (referred to as 
“P”) was included (see third column in Tab. 1) and one in which he was excluded 
(see last column). This seemed advisable given the number of available speakers 
was quite small from the start.

Table 1 - Test sets for match and mismatch condition

Number of Match Mismatch Mismatch without 
speaker P

Speakers 20 7 6
Recordings 62 34 29

SS comparisons 42 39 33
DS comparisons 798 246 175

Ref. 
population 

speakers

15
(all voice messages)

30
(balanced for both 

rec. condition)

30
(balanced for both 

rec. condition)

6. Methodology
Each recording was converted into a PCM WAV format (44.1 kHz, stereo) 
using an in-house audio converter. All files were downsampled to 8 kHz using 
Praat (Boersma, Weenink, 2016) as only frequencies up to 4 kHz are used for 
MFCC extraction (Kelly, Fröhlich, Dellwo, Forth, Kent & Alexander, 2019b). 
The channels with the speakers of interest were extracted and the relevant net 
speech was manually labelled and extracted using the TextGrid and script function 
within Praat. The main criterion for speech labelling was based on intelligibility. 
Only neutral speech was labelled while interferences and extreme occurrences 
of non-neutral speech were discarded, e.g. disturbing noise, further speakers in 
one-channel recordings, non-neutral phonation types (falsetto, whisper), highly 
increased vocal effort (screaming etc.), laughing. Net speech editing included the 
manual removal of pauses; VAD (voice activity detection) was therefore disabled 
in VOCALISE for the purpose of the tests. Nash (2019: 259) observed a cliff edge 
effect for recordings with net duration lower than 10 seconds. Especially [voice 
message] recordings are often characterised by limited amounts of net speech. 
Therefore, the minimum required net speech duration was set to 10 seconds, while 
a maximum of 60 seconds was chosen.

Personal data (e.g. names, addresses, telephone numbers, specific places) were 
removed. Intrinsic and extrinsic factors were documented, such as vocal effort, 
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technical degradations (reduced frequency bandwidth, data loss in mid-frequency 
regions, estimated microphone distance, reverberation, clipping, distortion) and 
background noise (babble, wind, traffic). Recordings with background music, 
often present when speech is recorded in bugged cars, were discarded. Additionally, 
it was indicated whether the degradation was temporary or permanent during 
the recording, and whether the recording qualified for investigation of language 
mismatch and/or recording condition mismatch because the respective speaker was 
also recorded in another spoken language and/or recording condition.

7. Results and discussion
Results are shown in the form of Tippett plots that represent the score distributions 
of the tests (Figs. 1-6). Tab. 2 contains information about the numerical performance 
parameters EER and Cllr.

Within the software Bio-Metrics, that was used to generate the Tippett plots, the 
representations are called Equal Error plots. For current purposes this is equivalent 
to Tippett plots. In a Tippett plot the line rising from left to right represents the 
SS results, the one falling from left to right represents the DS results. The values 
on the x-axes of the plots are given as log likelihood ratio (LLR, expressed in terms 
of natural logarithm). Without calibration [-CV] (Figs. 1, 2, 5 and 6), the values 
can be interpreted as LLRs in a technical sense; only after calibration [+CV] (Figs. 
3 and 4) they are LLRs in a forensically literal sense (where LLR = zero indicates 
maximally neutral evidence). The y-axes of the Tippett plots show error rates. The 
point where the SS and the DS lines intersect is known as the Equal Error Rate 
(EER). The higher the intersection on the level of the y-axis (hence the higher 
the EER), the worse the speaker-distinguishing ability of the respective system 
(the technical term for this is speaker discrimination). All upcoming Tippett plots 
representing the mismatch condition refer to the test set that included speaker “P” 
(the phantom speaker in the Zoo plots). The impact of excluding this speaker on 
the Tippett plots are not visualised in Figs. 1 and 2 but are verbalised (this does 
not apply to the calibrated results in Figs. 3 and 4, which show analogous effects). 
However, the numerical impact is fully documented in Tab. 2.
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Figure 1 - Tippett plot: raw scores [-norm, -CV] in the match condition [voice message] 
(solid green) and the mismatch condition [voice message – telephone] (dotted pink)

Fig. 1 shows the results of the raw scores [-norm, -CV]. The solid green lines represent 
the [voice message] comparisons in the match condition. The dotted pink lines 
represent the comparisons in the mismatch condition [voice message – telephone]. 
The green vertical line shows the location on the x-axis where LLR = 0 (applying 
to this and all subsequent figures). When match and mismatch conditions are 
compared in Fig. 1, there is very little difference in the DS distribution but a strong 
difference in the SS distribution. In the DS distribution the values (referred to as 
scores) are slightly smaller under the mismatch than under the match condition. 
In the SS distribution the scores are much smaller under the mismatch than under 
the match condition. Since the scores of the mismatch condition (compared to the 
match condition) move leftwards in the SS distribution but stay fairly constant 
in the DS distribution, the degree of overlap of the distributions is increased. 
Consequently, the intersection point of the distributions moves upwards on the 
y-axis and therefore the EER of the mismatch condition increases, i.e. speaker 
discrimination deteriorates.

Essentially, the same pattern is shown in Fig. 2, which illustrates the equivalent 
results after applying normalisation with S-norm, but without calibration [+norm, 
-CV]. Here, any difference among the DS scores has practically reduced to zero, but 
there is still a clear difference among the SS scores of the same kind (lower scores 
under the mismatch compared to the match condition) as in Fig. 1 [-norm, -CV].

The mismatch condition results shown in Figs. 1 and 2 apply to the test in which 
speaker P (the Zoo plot phantom-type speaker) was included. When excluded, the 
mismatch SS distribution occurs closer to the SS distribution of the match test, i.e. 
the separation between the SS distribution of match and mismatch is reduced. On 
average across the score distribution, the reduction is 32 percent for raw scores and 
38 percent for normalised scores. The score reduction is stronger for lower scores 
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than for higher scores, which also explains the striking reduction in EER due to the 
exclusion of P, shown in Tab. 2.

Figure 2 - Tippett plot: normalised scores [+norm, -CV] in the match condition 
[voice message] (solid green) and the mismatch condition [voice message – telephone] 

(dotted pink)

Previous studies investigating mismatch also found varying degrees of shifts in SS and 
DS scores. Mismatch regarding the time-interval between the recordings of interest 
was investigated by Kelly, Hansen (2016). Their score distribution plots (2016: 418, 
Fig. 3a, b) showed a decrease of SS scores with an increase of age difference (used age 
intervals: 1-10 years, 11-20 years, and 21-30 years), but almost no change among 
the DS scores. Kelly, Hansen (2021) studied the effect of mismatch in vocal effort 
based on [neutral – Lombard] and [neutral – whisper]. Again, a left-shift pattern 
on the SS side only was shown clearly for [neutral  –  Lombard], i.e. comparing 
match [neutral – neutral] with mismatch [neutral – Lombard] (2021: 935, Fig. 
2). A possible explanation for this asymmetric behaviour could be that the effect 
of mismatch itself might be ‘absorbed’ by the dissimilarity of the DS component. 
This means that the difference between speakers is large enough so that a condition 
mismatch on top of the speaker differences is of no further consequence.

Some experiments on mismatch did not show this pattern but showed a clear 
lowering of scores for both SS and DS scores. Fröhlich (2017) compared recording 
mismatch between [telephone] interception and a mock police [interview] 
scenario using the forensic_eval_01 dataset (Morrison, Enzinger, 2016) with match 
conditions within the scenarios. Exploring her score distribution plots (2017: 
72), the presented raw scores [-norm, -CV] did show a substantial left-shift for 
both the SS and the DS distributions in the mismatch condition compared to the 
match condition. The same kind of pattern can be seen for [neutral – whisper], i.e. 
comparing match [neutral – neutral] with mismatch [neutral – whisper] (Kelly, 
Hansen, 2021: 935, Fig. 2). A possible explanation for this discrepancy with the 
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asymmetric pattern shown above could be as follows. When the channel conditions 
are strong and systematic (as in forensic_eval_01) they might – simply spoken – act 
as a “noise-vector” that is almost uncorrelated with the “speaker-vector”. For that 
reason, the channel influence and the (different-)speaker influence are additive. In a 
broader sense, [whisper] might also be conceived of as a channel effect. Like a noisy 
channel, it is corrupting parts of regular speech. This mode of corruption might be 
fairly independent of the speaker differences, and again, creating an additive effect in 
reducing DS scores. In contrast to this pattern, the difference between [telephone] 
and [voice message] investigated here does not seem to be strong, systematic, and 
independent enough to have a clear effect on DS scores.

Figure 3 - Tippett plot: normalised and calibrated scores using cross validation calibration 
[+norm, +CV] in the match condition [voice message] (solid green) 

and the mismatch condition [voice message – telephone] (dotted pink)

Fig. 3 is based on normalised scores followed by cross validation calibration using 
Bio-Metrics [+norm, +CV]. One expected effect of calibration that can be seen 
in the Tippett plot is that the intersection between the SS and DS distribution is 
located very closely at LLR = 0. Moreover, it can be observed that there is a shift 
towards the centre of the plot for both mismatch distributions (SS and DS). This 
behaviour has the effect that the values from the mismatch condition (now fully 
calibrated LLRs) fall entirely within the range of values from the match condition (a 
similar pattern can also be found in the age mismatch study by Kelly, Hansen, 2016: 
2418, Figs. 3c, d). This means that under mismatch conditions it is not possible to 
obtain the same range of LLRs as under match conditions. Furthermore, it can be 
seen that the intersection point is higher on the y-axis under mismatch than match, 
i.e. the EER is higher.
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Figure 4 - Tippett plot: normalisation effect [+norm, +CV] (solid lines) in comparison 
to raw scores [-norm, +CV] (dotted lines) in the match condition [voice message] (green) 

and the mismatch condition [voice message – telephone] (pink)

Fig. 4 shows the effect of normalisation, hence the improvement of the system’s 
performance, on both match (green) and mismatch condition (pink). In 
comparison with the non-normalised raw scores (dotted lines) [-norm, +CV], the 
normalised distributions (solid lines) [+norm, +CV] are stretched across a wider 
range. This effect is stronger in the match condition (green), as the normalised 
scores are constantly higher for the SS and constantly lower for the DS distribution. 
For mismatch, the pattern is less clear especially in ranges lower than -6.4, where 
normalised and non-normalised results cross.

Table 2 - Summary of EER and Cllr results for match and mismatch conditions 
under different system options

Condition System options EER in % Cllr EER in %
w/o speaker P

Cllr
w/o speaker P

match

[-norm, -CV] 4.3 2.37 - -
[-norm, +CV] 4.4 0.18 - -
[+norm, -CV] 2.1 0.62 - -
[+norm, +CV] 2.2 0.12 - -

mismatch

[-norm, -CV] 16.3 14.73 7.9 7.7
[-norm, +CV] 17.7 0.84 10.9 0.43
[+norm, -CV] 12.1 0.66 9.0 0.70
[+norm, +CV] 14.9 0.54 11.3 0.41

Tab. 2 shows EERs and Cllrs for all performed tests. Within both match and 
mismatch condition, normalisation [+norm, -CV] has the effect of improving 
discrimination (lowered EER) compared to the raw scores [-norm, -CV]. This 
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is in line with expectation. An exception is the mismatch test in which speaker P 
is excluded; in this case, after normalisation, the EER is slightly higher instead of 
lower. Normalisation also has a certain calibration effect, i.e. unacceptably high 
Cllr values among raw scores are lowered to more acceptable values (smaller than 
1) after normalisation. Only after applying calibration [+CV] the Cllr values are 
at their lowest. With sufficiently large calibration sets (the VOCALISE manual 
recommends at least 15 speakers with two recordings per speaker, but preferably 
more speakers) calibration should have a negligible effect on discrimination, i.e. 
EER before and after calibration should be approximately the same. This is true 
for the results of the match condition, but there are exceptions for the results of the 
mismatch condition. In the mismatch condition, the minimum recommendation 
for the use of calibration could not be met, which probably leads to the exceptional 
patterns. It is also possible that for calibration sets below the recommended 
minimum, the effect of calibration may be less effective because the calibration 
parameters may be influenced by the specific individual speaker patterns in the 
calibration set, rather than just reflecting the case conditions. Hence, Cllr may now 
be higher than if the recommendations were met.

Comparing the results of the mismatch condition with and without speaker P, it 
can be observed that the exclusion of this speaker causes a substantial improvement 
in discrimination, i.e. a reduction in the EER. Cllr is also substantially improved 
for the raw scores, but for the normalised scores the effects are small, or Cllr even 
deteriorates [+norm, -CV].

After having shown the results for mismatch compared to match, the following 
Tippett plots compare the unfamiliar match condition [voice message] with the 
more established match condition [telephone] interception. Figs. 5 and 6 compare 
two tests with match conditions, namely [voice message – voice message] shown 
earlier (represented in solid green) with [telephone – telephone] (represented in 
dashed blue). The [telephone] test is based on the corpus GFS 2.0 (Solewicz et al., 
2017). Fig. 5 shows the results for raw scores [-norm, -CV], Fig. 6 for normalised 
scores (without applying calibration) [+norm, -CV].

Fig. 5 shows that on the level of raw scores there is a shift towards higher values 
from the condition [telephone – telephone] to [voice message – voice message]. 
That shift applies to both SS and DS comparison results to about the same extent. 
Given the complexity of an x-vector system, it is difficult to explain this shift. It is 
possible that [voice message] data are only scarcely represented in the training data 
of the system, whereas [telephone] conversation data are represented abundantly. 
As a result, it is possible that above-average similarities are found between [voice 
message – voice message] comparisons, resulting in higher scores. It could also be 
relevant that [voice message] data contains spectral information up to 7 kHz, while 
[telephone] data is much more limited. Accordingly, the entire 4 kHz range can 
be explored in [voice message] data after down sampling, which might lead to a 
higher score. Finally, the trends of quality degradation in the tested [voice message] 
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data mentioned in § 5.1 (especially in-vehicle noise) might have led to a similarity 
pattern that is not present in the [telephone] data.

Figure 5 - Tippett plot: raw scores [-norm, -CV] in the match condition 
[voice message – voice message] (solid green) and the match condition [telephone – telephone] 

(dashed blue)

Figure 6 - Tippett plot: normalised scores [+norm, -CV] in the match condition 
[voice message – voice message] (solid green) and the match condition [telephone – telephone] 

(dashed blue)

Fig. 6 shows that when normalisation is applied, the difference between the two 
match conditions [voice message] and [telephone] is reduced. On the DS side, 
the difference has almost disappeared. On the SS side, the difference is limited to 
only some areas of the cumulative distribution. As explained earlier, normalisation 
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is performed by feeding additional data into the system that corresponds to 
the conditions of the case. In comparisons within [voice message] data this 
normalisation set consists of [voice message] data, in the case of [telephone]-based 
comparisons, the normalisation set consists of [telephone] recordings. Providing 
case-relevant normalisation data seems to reduce quite strongly the differences of 
the score distributions that are found when no normalisation is applied, leading to a 
large degree of overlap between the two score distributions. About the same amount 
of overlap is found if cross validation calibration is applied to the normalised scores 
[+norm, +CV] separately for each condition (not shown here).

When looking at the similarity of the distributions in Fig. 6, one may wonder why 
there is such a clear mismatch effect at all. In other words, when a test based on [voice 
message] data leads to very similar score distributions as a test based on [telephone] 
interception, why is performance degraded in comparisons where the questioned 
speaker’s recording is a [voice message] while the suspected speaker’s recording is 
a [telephone] intercept? For an explanation one should probably consider the raw 
values, not the normalised scores. The raw scores are the values directly resulting 
from the automatic processing that takes place in the multidimensional space of 
the acoustic features and their models. If, as assumed above, the condition [voice 
message] was poorly represented in the training data of the system, these recordings 
might have stuck out in the multidimensional space, making them not only similar 
to other [voice message] recordings (as assumed above), but also dissimilar to 
recordings in other conditions, such as [telephone] recordings. Hence the score 
reductions under mismatch. The above-mentioned degradation in quality of [voice 
message] data compared to [telephone] data may have increased this effect.

8. Conclusions
The goal of the presented FORBIS project was to compile a real case forensic 
corpus to validate the performance of FASR under forensically realistic conditions 
and subsequently apply it to a greater extent in speaker comparison casework. 
Here, the match condition [voice message] as well as the mismatch condition 
[voice message – telephone] were validated. Results from the match condition 
[voice message] were compared to the match condition [telephone], a condition 
which has been far more extensively studied in casework application as well as in 
research projects.

When examining the results in § 7 with regard to their impact on forensic 
casework, the following aspects can be emphasized.

Comparison of the match condition [voice message – voice message] with the 
mismatch condition [voice message – telephone] has shown that when the raw 
scores or the normalised scores are examined, there is a reduction of SS scores from 
the match to the mismatch condition and essentially no change between the DS 
scores. As a result, the distributions overlap more under the mismatch than the 
match condition and speaker discrimination is lower under the mismatch than 
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under the match condition. Left-shift among SS but not DS scores is a pattern 
that has been found elsewhere in the literature and a possible explanation has been 
given above. In casework, calibration would normally be applied, that means the 
forensically most relevant patterns are the ones illustrated in Figs. 3 and 4. These 
indicate that the system is more powerful under the match condition than under 
the mismatch condition, i.e. EER and Cllr are lower and there is a wider range of 
possible LLRs in the match condition. Casework can be conducted under both 
conditions if validation tests are available. Although speaker discrimination abilities 
are lower under mismatch, the system is still forensically useful, i.e. mismatch is not 
an exclusion criterion.

The results for the mismatch condition improved when Zoo plots were applied 
and the one speaker classified as “phantom” was removed from analysis. This 
improvement seems to indicate that screening for outlier speakers using Zoo plots 
can improve speaker discrimination and calibration.

The comparison of the unfamiliar condition [voice message] with the established 
condition [telephone], both in match condition, shows that both have similarly 
high speaker discrimination power (voice message: EER = 2.2%, telephone: EER = 
2.3%). This means that if validation is available (as shown here), automatic speaker 
recognition can be performed equally well in comparisons based on [voice message] 
data as in comparisons based on [telephone] interception. It is not the case that 
[voice message] is a condition that is particularly challenging in itself. That would 
distinguish it from challenging conditions such as [Lombard] speech or [whisper] 
addressed in Kelly, Hansen (2021), where match condition performance within 
this [challenging] condition is lower than within a [neutral] condition, although 
mismatch between [neutral] and [challenging] conditions would be even poorer.

What if there was no validation data – could [voice message] cases be carried out 
with validation data based on [telephone] speech? Based on what we know from 
the presented tests, there is a difference in the score distributions of the conditions 
[voice message] and [telephone]. The difference is clear when looking at the raw 
scores but is much smaller when applying normalisation with case-relevant data 
to both, [voice message] and [telephone] data, respectively. If, for example, [voice 
message] comparisons are calibrated with [telephone] data, there will be a shift 
in LLRs that basically corresponds to the difference in the scores shown in Fig. 5 
(when calibration is based on the raw scores [-norm, +CV]) or the scores shown 
in Fig. 6 (when calibration is based on the normalised scores [+norm, +CV]). 
A correct interpretation of the speaker comparison result would be hindered by 
the unknown extent of the shift. The hindrance would be low if normalisation 
was possible, i.e. if [voice message] data could be provided, but higher if not. It is 
a matter of judgement to define what constitutes a sufficiently small or too large 
interpretability bias. What should be done is to perform more tests under further 
unfamiliar conditions to get an impression about what constitutes large or small 
differences in the score distributions and whether results for some unfamiliar 
conditions could be interpolated based on previous tests. It is possible, for example, 
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that audio data from outdoor video recordings lead to larger score shifts than the 
ones observed here.

More data must be collected. Data collection should be done continuously by 
adding relevant casework data to the already existing corpus. This would allow for 
testing of additional languages (e.g. Turkish, Russian), recording conditions (e.g. 
video, interior surveillance) as well as mismatch scenarios for FASR application. 
Initial validation tests for language mismatch [Arabic – German] under [telephone] 
condition have already been carried out. However, more data is needed for valid and 
reliable interpretations. In addition, further languages and recording conditions 
in casework could become more frequent as new criminal networks emerge and 
technical possibilities develop.
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