
 DOI: 10.17469/O2108AISV000004

JUSTIN J.H. LO

Seeing the trees in the forest: Diagnosing individual 
performance with acoustic data in likelihood ratio based 
forensic voice comparison

System testing is a crucial part of likelihood ratio based forensic voice comparison, but the 
evaluation of system performance has thus far focused on global metrics, with little attention 
paid to the variation in individual performance and the factors behind such variation. Using 
long-term formant distributions as a case study, this study applies the notion of biometric 
menagerie to analyse performance on the individual level, and further explores the 
connection between performance and the underlying acoustic data. Zooplot analysis reveals 
distinct distributions of how individual speakers perform for each long-term formant. 
Acoustic analysis further reveals clear patterns in the formant data displayed by speakers 
with outlying performance. Together, the findings support the view that individual-level 
analysis can offer useful diagnostic insights into system performance that are unavailable in 
global-level assessment.
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1. Introduction
In cases of forensic voice comparison (FVC), a voice sample from a speaker whose 
identity is unknown is typically compared with another sample from a known 
speaker. To this end, features in the voice and speech are analysed to assess both 
the similarity between the questioned and known samples, and the typicality of 
the features observed. In recent years, the adoption of likelihood ratios (LRs) in 
forensic speech science offers an explicit framework to assess voice evidence with 
respect to two competing hypotheses: (1) that the two speakers are the same, and 
(2) that the unknown speaker is not the known speaker, but another person in the 
relevant population. Within this framework, the analyst’s conclusions are expressed 
in the form of a verbal or numerical LR to indicate the direction and degree of 
support offered by the evidence for one of the propositions. As LRs are sensitive 
to not only the speech features chosen, but also the method and the database of 
speakers used in their derivation, these must be tested to ensure that the resultant 
systems are valid and reliable.

In numerical LR-based FVC, system evaluation is predominantly conducted on 
the global level, where the strength of performance is indicated by means of a single 
metric score. The most commonly used metrics are the equal error rate (EER) and 
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the log likelihood ratio cost function (Cllr, Brümmer, du Preez, 2006). The EER 
identifies the percentage of comparisons with contrary-to-fact outcomes, at a score 
threshold where the rate of misses (same speaker identified as different) is equal 
to the rate of false matches (different speakers identified as the same). Cllr, on the 
other hand, takes into account the magnitude of errors, such that contrary-to-fact 
LRs of a larger magnitude incur higher penalty and, in turn, higher Cllr. A Cllr that 
is greater than 1 indicates that the system is poorly calibrated. For both of these 
metrics, stronger system performance is indicated by smaller values: The closer they 
are to 0, the better the system is judged to be performing.

Other graphical means of evaluation, such as receiver operating characteristic 
(ROC) curves, detection error tradeoff (DET) curves and Tippett plots, are also 
often employed to provide more information about the overall performance of 
the system (see Morrison, Enzinger, 2016). Commonly used in the assessment of 
automatic speaker recognition (ASR) systems, ROC curves plot the rate of true 
matches against the rate of false matches across a range of acceptance thresholds in 
a single curve, while DET track the rate of false matches against the rate of misses 
in a similar fashion. Meanwhile, Tippett plots trace performance of same-speaker 
and different-speaker comparisons in separate curves to visualise the cumulative 
distribution of scores (or LRs) in each type of comparison.

As much as the above metrics and graphs can illustrate the global level of system 
performance, their diagnostic value can be limited. A more microscopic view of 
system performance, beyond rates and sizes of error, can be obtained by examining 
the performance of individual speakers. By analysing in detail the speakers who 
perform exceptionally well or disproportionately contribute to errors, researchers 
can gain insights into the nature of the errors in the system and work towards 
improving system design in a targeted manner. Further, identifying individual 
voices who are difficult to match against any speakers in the same database may 
be helpful for optimising homogeneity within forensic databases (San Segundo, 
Tsanas & Gómez-Vilda, 2017).

To date, analysis of individual performance remains rarely performed in the 
context of FVC, and the causes behind speakers being identified as outliers within 
any tested system are still underexplored. In addition to technical properties 
of the audio samples, such as non-uniform duration and acoustic quality (Nash, 
2019), variation of individual performance in any given system can arise due to 
physiological and behavioural reasons, as well as the impact of these factors on 
the quality of data capture (Dunstone, Yager, 2009). Fundamental frequency, for 
example, is susceptible to variation due to physiological factors in both the short 
and the long term (Braun, 1985; Rhodes, 2012). In terms of behaviour, speakers 
may seek to disguise their voice. They may also shout at such a volume that causes 
clipping in the recording, thus impacting data capture. A close analysis of LRs from 
individual speakers and the corresponding speech data used to generate those LRs 
may thus not only be useful in diagnosing the sources of variation in individual 
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performance, but also more generally help understand the relationship between 
input and output in numerical LR-based testing.

Within the context of ASR, Alexander, Forth, Nash & Yager (2014) has 
proposed preliminary links between individual performance and aspects of voice 
quality. However, subjective judgments of voice quality are far removed from cepstral 
coefficients, the acoustic features used in ASR systems that are highly abstract, and 
do not encode the same speaker-specific information (French, Foulkes, Harrison, 
Hughes, San Segundo & Stevens, 2015). The connection between individual LR 
performance and the input data thus warrants further investigation.

To address this issue, the present study seeks to extend the analysis of individual 
LR performance to systems based on linguistic-phonetic variables, using long-
term formant distributions (LTFDs) as a case study. It additionally explores 
the connection between individual performance as derived from LRs and the 
underlying speech data. Following previous analyses of individual performance, this 
study makes use of the notion of “biometric menagerie” (see below §3) to classify 
speakers who perform exceptionally well or poorly. Individual LTF data from these 
outlying speakers are considered with respect to others in the population to analyse 
any links with their performance.

2. Long-term formant distributions
The use of LTFDs as viable speaker discriminants in FVC is first proposed in 
Nolan, Grigoras (2005). Instead of individual sounds, LTFDs measure the whole 
collection of formant estimates from all vowels (or voiced sounds) present in the 
recording. LTFDs are thus argued to capture the overall filtering behaviour of the 
supralaryngeal vocal tract, reflecting not only its physiology but also the speaker’s 
idiosyncratic articulatory habits. There is empirical evidence in support of the 
latter, as LTF1 and LTF2 means have respectively been found to correlate with 
the vocal settings of raised/lowered larynx and fronted tongue body (French et 
al., 2015). Further support for the inclusion of LTFDs in the FVC toolkit can be 
found in their independence from other acoustic and temporal measures, such as 
fundamental frequency and speaking rate (Moos, 2010).

Speaker-specific information in LTFDs lies not only in the location of the peaks 
or means of the distributions, but also in their overall shapes (Cho, Munro, 2017). 
Studies conducted within the LR framework have tested the discriminatory potential 
of LTFDs in English and German and reported low error rates in both languages 
(Becker, Jessen & Grigoras, 2008; French et al., 2015; Gold, French & Harrison, 
2013). LTFs of higher formants have been found to provide stronger performance 
than those of lower formants (Gold et al., 2013), while using multiple formants in 
combination can further improve performance (Becker et al., 2008; Gold et al., 2013).

As semi-automatic formant-based acoustic features, LTFDs are readily interpretable 
in linguistic-phonetic terms, as opposed to cepstrum-based features used in automatic 
approaches, which do not display any comparable degree of interpretability (Rose, 
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2003). This characteristic is considered to make LTFDs a useful set of features for the 
present exercise. Previous attempts at individual analysis for LTFDs have also sought 
to explore their links with individual LR performance, such as in Hughes, Harrison, 
Foulkes, French, Kavanagh & San Segundo (2018), who found considerably 
variable behaviour across individual speakers, not only in the strength of evidence 
produced, but also in the stability of their performance in face of channel variation. 
Importantly, in systems that combined LTF1-3, their corresponding bandwidths and 
delta coefficients as input, none of LTF1-3 means was found to be able to predict 
an individual’s performance, although it must be noted that only the relationship 
between performance and means was considered but not that between performance 
and the speakers’ full distributions.

3. The biometric menagerie
The current study makes use of zooplots, a diagnostic tool used in the field of 
biometrics to visualise individual user performance. The zooplot is built upon 
the idea of a “biometric menagerie”, developed by Doddington, Liggett, Martin, 
Przybocki & Reynolds (1998) and later expanded on by Dunstone, Yager (2009), 
where speakers are classified into user groups or animals based on their individual 
performance. In a zooplot, each speaker’s performance in same-speaker comparisons 
(or genuine performance) is plotted against their performance in different-speaker 
comparisons (or imposter performance). The use of zooplots thus facilitates the 
identification of problematic speakers in the database for further analysis and 
diagnosis. Additionally, the distribution of speakers in a zooplot can be indicative 
of systematic weaknesses in the algorithm or the database used. A predominance of 
speakers who perform well in different-speaker comparisons but poorly in same-
speaker comparisons, for example, may be an outcome of poor-quality enrolment in 
the database (Dunstone, Yager, 2009).

In their original formulation, Doddington et al. (1998) distinguishes a default 
group of speakers, sheep, from other speakers who tend to contribute disproportionately 
to system errors. These animal groups include goats, whose voices are particularly 
difficult to match and hence likely produce errors in same-speaker comparisons; lambs, 
who may disproportionately account for false matches due to their voices being easily 
imitable; and wolves, whose voices may easily imitate others’ and thus also contribute 
to false matches. Dunstone, Yager (2009) introduces a set of relational animals, which 
are defined by the relationship between a speaker’s performance in same-speaker 
comparisons and in different-speaker comparisons, rather than their performance in a 
single type of comparisons. Described in FVC terms, these groups include:
– doves, who perform relatively well in both types of comparisons;
– worms, who perform relatively poorly in both types of comparisons;
– phantoms, whose voice characteristics are difficult to match against any speaker 

and so who perform well in different-speaker comparisons but poorly in same-
speaker comparisons; and
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– chameleons, who can be easily matched with (or camouflage as) any speaker and thus 
perform well in same-speaker comparisons but not in different-speaker comparisons.

This study focuses on the relational groups introduced by Dunstone, Yager (2009), 
as they allow specific speakers who belong to each of these groups to be identified. 
Members of each group can then be further analysed for the causes behind their 
outlying performance within the tested system to be potentially diagnosed.

4. Methodology
4.1 Materials

In the present study, a subset of high-quality microphone recordings from the Voice 
ID Database (Royal Canadian Mounted Police, 2010-2016) were used, consisting 
of 60 adult male bilingual speakers of Canadian English and French (mean age = 
27.7 years), all of whom recorded the same sets of read materials in both languages. 
Metadata on speakers’ language and social background were limited, and speakers 
were selected on the basis that they participated in recording for both languages and 
did not self-report knowledge of any other languages. 23 and 31 speakers reported 
their first language to be English and French respectively (mean age of first exposure 
to second language = 5.3 years), while the remainder reported to be simultaneously 
bilingual in both. The current analysis is limited to the data from English.

All speakers were recorded reading 20 phonetically balanced sentences extracted 
from the Harvard sentences. 22 speakers were also recorded reading an abridged 
version of The Rainbow Passage (Fairbanks, 1960). All recordings were first 
orthographically transcribed in Praat (Boersma, Weenink, 2016), where hesitations, 
repetitions, mispronunciations and deviations from the set material were retained 
as far as possible, although partial words were ignored. Automatic segmentation was 
performed using the Montreal Forced Aligner (McAuliffe, Socolof, Mihuc, Wagner 
& Sonderegger, 2017), which was then manually checked for errors in alignment 
and corrected where necessary.

While the quality of the recordings may result in validity measures that are more 
optimistic than those obtained from forensically realistic materials, the controlled 
nature of the materials has the advantage of ensuring that variation in LTFDs 
can be attributed to speaker physiology and behaviour, rather than differences in 
speech content.

4.2 Data extraction

Formant centre frequency estimates for the first four formants were extracted in 
Praat at 10 ms intervals from the onset to the offset of all vowels and glides. Formant 
extraction was automated with a Praat script, using the Burg algorithm for linear 
predictive coding, with the formant tracker set to search for 6 formants up to 
a maximum formant frequency of 5500 Hz in 25 ms frames. These settings were 
determined by preliminary testing to be the most appropriate for the current set 
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of speakers and remained fixed for all speakers. Each speaker’s recording contains 
26.2 s of pure vowels and glides on average, yielding a grand total of 172,054 sets of 
formant estimates from all speakers for system testing.

4.3 Performance testing

Five systems, each using a different set of input parameters, were tested in total. In 
addition to the combination of all four LTFs, each LTF was tested individually to 
facilitate one-to-one comparison with the acoustic data.

To test each system, the 60 speakers were randomly divided into test, training and 
background sets, each made up of 20 speakers. The computation of LRs followed 
the two-stage process set out in Morrison (2013). In the feature-to-score stage, 
comparisons were conducted for all speaker-pairs in the test set, with each speaker 
acting in turn as the questioned and known speaker for all speakers, resulting in 
20 same-speaker and 380 different-speaker comparisons. LTFDs were modelled 
and compared using the Gaussian mixed model-Universal background model 
(GMM-UBM) approach (Becker et al., 2008; Reynolds, Quatieri & Dunn, 2000), 
implemented by means of the mclust package in R (R Core Team, 2018; Scrucca, 
Fop, Murphy & Raftery, 2016). As only a single recording was available from 
each speaker, the first half of the recording was taken to form the known sample 
for the speaker, and the second half was taken to form the questioned sample. 
The reference population was modelled with a UBM, a single GMM composed 
of 12 Gaussians calculated using data pooled together from all 20 speakers in the 
background set. In each comparison, a GMM for the known speaker was derived 
by using data from the known sample to adapt the UBM by means of maximum 
a posteriori estimation, and the output score of the comparison was calculated by 
Equation (1). In the score-to-LR stage, the test scores were then calibrated with 
output scores similarly computed from the training set to obtain log10LRs (LLRs) 
in a logistic regression procedure. LLR > 0 in a comparison indicates support for the 
same-speaker hypothesis, while LLR < 0 indicates support for the different-speaker 
hypothesis. As such, negative LLRs in same-speaker comparisons and positive LLRs 
in different-speaker comparisons are considered to be contrary-to-fact errors.

(1)

where x1, x2, ..., xN correspond to each set of input data from the questioned sample, 
S = suspect GMM and B = background UBM.

System validity was then assessed using EER and Cllr. The whole sampling and 
testing procedure was repeated 100 times, in order to minimise the effect of speaker 
random sampling on the resultant LRs and validity metrics (Wang, Hughes & 
Foulkes, 2019), as well as to ensure all speaker-pairs were compared.
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4.4 Individual-level analysis

To visualise individual LR performance, zooplots for each system were constructed 
by plotting each speaker’s average performance in different-speaker comparisons 
against their performance in same-speaker comparisons, where speakers with 
stronger performance were positioned towards the top and the right of the plot. 
In this study, average performance of any speaker is defined as the arithmetic mean 
of LLRs from all same- or different-speaker comparisons across 100 repetitions 
involving that speaker.

Individual-level analysis of LR performance was conducted in three ways. 
First, the overall distribution of speakers on the zooplots was analysed, in terms 
of both the absolute values of LLRs (as they can be directly interpreted) and the 
relative positions of speakers. Second, speakers with outlying performance in each 
system were identified and categorised into one of the four relational animal groups 
defined in §3. Following Dunstone, Yager (2009), doves are defined as speakers 
whose average performance is within the best 25% of all speakers in both types of 
comparisons. This group can therefore be located in the top right corner of the 
zooplot, as they comprise speakers with the highest, most positive mean LLR in 
same-speaker comparisons (SS-LLR) and the lowest, most negative mean LLR in 
different-speaker comparisons (DS-LLR). Worms, phantoms and chameleons 
are analogously defined, as outlined in Tab. 1. Speakers whose average mean 
LLR lies between the top (or bottom) 25% to 30% were additionally identified 
as near-members of animal groups to mitigate cliff-edge effects of borderline cases 
documented in O’Connor, Elliott, Sutton & Dyrenfurth (2015). Membership of 
relational groups was then analysed in each system and compared across different 
systems. Third, to explore the relationship between LR performance and acoustic 
data, LTFDs of speakers classified as (near-)members of relational groups were 
compared with those of the other speakers.

Table 1 - Inclusion criteria for doves, worms, phantoms and chameleons and their locations 
in zooplots

Mean same-speaker 
LLR

Mean different-
speaker LLR Location

Doves Highest 25% Lowest 25% Top right
Worms Lowest 25% Highest 25% Bottom left

Phantoms Lowest 25% Lowest 25% Top left
Chameleons Highest 25% Highest 25% Bottom right

5. Results
5.1 Global metrics

Performance for each system, measured in Cllr and EER, is illustrated in Fig. 1. 
Mean Cllr for all systems (and indeed all repetitions) was below 1, indicating that 
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the systems were well calibrated. The system combining all four LTFs reported the 
lowest mean Cllr and EER at 0.31 and 7.3%, clearly outperforming systems using 
only single LTFs. Individually, each of LTF1-4 performed at similar levels, with a 
mean Cllr between 0.6 and 0.7 and a mean EER of around 20%. Nevertheless, out of 
all systems using individual LTFs, Fig.1 demonstrates a trend of LTF2 performing 
the worst, with the highest mean Cllr (0.69) and EER (22.1%), while LTF1 had the 
lowest mean Cllr (0.62) and LTF4 had the lowest mean EER (19.0%).

Figure 1 - Boxplots of Cllr (left) and EER (right) from system testing

5.2 Individual-level analysis

This section presents results on individual LR performance in the tested systems. In 
each system, the distribution of LLRs is described with the visual aid of a zooplot. 
The scales of all zooplots are fixed, in order to facilitate direct comparison across 
different systems. This is accompanied by an analysis of the classification of animal 
groups in each system and followed by a comparison of group membership across 
all systems.

5.2.1 LTF1
The zooplot shown in Fig. 2 illustrates the individual LR performance of all 
60 speakers in the system based on LTF1. As demonstrated in the zooplot, all 
speakers reported a negative mean DS-LLR. While mean SS-LLR was positive for 
most speakers, 12 speakers (20%) reported a negative mean SS-LLR, suggesting 
that they were not well matched with themselves on average. Performance in SS 
and DS comparisons is strongly correlated (|r| = .74, p < .0001): Speakers with 
stronger performance in SS comparisons similarly reported stronger performance 
in DS comparisons. This is further supported by the absence of any phantoms or 
chameleons, as only members of the other two relational groups (10 doves and five 
worms) were identified. Overall, the system produced a narrow range of mean 
LLRs, with SS-LLR between -0.40 and 2.55, and DS-LLR between -0.48 and 



SEEING THE TREES IN THE FOREST 85

-1.47. Most speakers could be found in a dense cluster near the lower left corner 
of the zooplot.

Figure 2 - Zooplot for system with LTF1 as input (abscissa and ordinate respectively show 
mean SS-LLR and DS-LLR in log10LR; solid line segments represent 25th 

and 75th percentiles; dotted lines indicate mean LLR = 0; members and near-members 
of relational groups respectively in black and grey)

5.2.2 LTF2
As shown in the zooplot in Fig. 3, all speakers also reported a negative mean DS-
LLR in the LTF2 system, and a majority of speakers reported a positive mean 
SS-LLR. Although there were the same number of speakers with negative mean 
SS-LLR (12) as in the case of LTF1, the magnitude of these negative SS-LLRs was 
slightly higher (up to -0.80), indicating poorer performance in SS comparisons. 
Performance in SS and DS comparisons is only moderately correlated (|r| = .51, 
p < .0001), with a notable presence of speakers in the upper left region of the 
zooplot, including three speakers who were identified as phantoms. By contrast, 
only nine doves and three worms were identified for LTF2, fewer than any other 
individual LTFs.
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Figure 3 - Zooplot for system with LTF2 as input

Figure 4 - Zooplot for system with LTF3 as input

5.2.3 LTF3
The distribution of speakers in the zooplot for LTF3, as displayed in Fig. 4, shows 
broad similarities with that for LTF1. No speakers were classified as phantoms or 
chameleons, and a strong positive correlation was similarly found between mean 
SS-LLR and DS-LLR (|r| = .92, p < .0001). As in the case of LTF1, a dense cluster 
of speakers can be located near the lower left corner of the zooplot, including eight 
worm speakers. Despite the relatively high number of worms, only eight speakers 
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reported a negative mean SS-LLR, none of which exceeded -0.15, indicating 
smaller contrary-to-fact LLRs on average. Stronger individual performance is also 
evident among the best-performing doves (12 members and 3 near-members), who 
are distant from the dense cluster of speakers and are further spread upward and 
rightward in the zooplot, as a result of more positive mean SS-LLRs and more 
negative mean DS-LLRs.

5.2.4 LTF4
The zooplot for the LTF4 system, as shown in Fig. 5, illustrates a distribution of 
speakers resembling that for LTF3, although speakers are less clustered towards the 
lower left corner, indicating an overall greater degree of between-speaker variation 
in LR performance. Performance between SS and DS comparisons is also strongly 
correlated (|r| = .87, p < .0001), with particularly high mean SS-LLR (up to 4.78) 
reported for a number of speakers. At the same time, this system reported the 
highest number of speakers with outlying performance, where a total of 11 speakers 
were classified as doves and 13 were classified as worms. The high proportion of 
outlying speakers suggests that, in the case of LTF4, individual performance is more 
extremely distributed.

Figure 5 - Zooplot for system with LTF4 as input

5.2.5 All LTFs combined
Compared to the zooplots for individual LTFs, there is evidently a wholesale shift 
of speakers towards the top of the zooplot in Fig. 6, brought on by more highly 
negative DS-LLR. Speakers also tend to have much higher SS-LLR, in contrast 
with zooplots for the other systems, as evidenced by the rightward spread of 
speakers in Fig. 6. The majority of speakers (42) reported a mean SS-LLR greater 
than 1, while only three speakers reported marginally negative mean SS-LLR (up 
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to -0.05). In this system, mean SS-LLR and DS-LLR is moderately correlated 
(|r| = .59, p < .0001). No phantoms or chameleons were found (although one speaker 
was classified as near-phantom), while eight doves and six worms were identified. 
Overall, the distribution of speakers in Fig. 6 is clearly much less clustered than in 
any of the individual LTF systems.

Figure 6 - Zooplot for system with all four LTFs as input

5.2.6 Speaker classification
Following separate analysis within each system above, this section considers the 
performance of individuals across all LTFD systems. Fig. 7 summarises the animal 
group classification of all speakers for each system tested. While there are some 
overlaps between different LTFs, it is clear that each LTF generally captured a 
different group of outlying speakers. Out of 60 speakers, 21 (35%) were in or near 
the same group for more than one LTF, but only three speakers (5%) were in or 
near a relational group for all four LTFs: 441 was consistently classified as a dove; 
470 was similarly always in or near the dove group; 119 was classified as a worm 
for all LTFs except for LTF2, where he was classified as a phantom. The difference 
between systems is further illustrated by the finding that 12 (20%) speakers were 
classified as the best-performing doves for one LTF but as the worst-performing 
worms for another. Across all four LTFs, only five speakers (8%) were not in or 
near any group, meaning that the vast majority of speakers could be considered an 
outlying speaker for at least one LTF.
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Figure 7 - Summary of speakers classified as doves (green), worms (purple), phantoms (blue) 
or chameleons (orange) in all systems tested (near-members of each group in lighter shade)

In the combined system (top row, Fig. 7), all but two speakers who were in or 
near an animal group were similarly classified for at least one of the individual 
LTFs. Out of those 22 speakers, 12 of them shared their classification with the 
LTF4 system. While systems using other LTFs shared fewer (near-)members of 
animal groups with the combined system, with LTF2 having only five speakers 
in common, each of the individual LTFs could uniquely account for at least one 
classified animal in the combined system. The only exceptions were 217, who 
was a worm in the combined system but not a member of the outlying groups for 
any individual LTF, and 113, who was a near-chameleon in the combined system. 
The latter could be explained by the mixed contribution of his relatively poor 
DS performance in LTF4, for which he was classified as a worm, and relatively 
excellent SS performance in LTF3, which resulted in a dove classification.

Overall, the analysis here provides evidence on an individual level that 
complementary speaker-specific information is available from LTFDs of 
different formants. As the findings above illustrate, speaker-specific information 
from each LTFD contributes, albeit in varying degrees, to the classification in 
the combined system.

5.3 Acoustic analysis

Results of acoustic analysis from the higher formants are first presented here. The 
full distributions of each speaker’s LTF3 and LTF4, as displayed in Fig. 8, show 
considerable between-speaker variation in the location of the peak frequency. 
Peaks in individual LTF3 distributions range from just above 2000 Hz to nearly 
2900 Hz, while peaks in LTF4 distributions range from below 3000 Hz to around 
3600 Hz. A high degree of variability is similarly found in the shape of the 
distribution, in terms of both the height and the sharpness of the peaks. Bimodal 
distributions are also evidenced, albeit rarely, for individual speakers.
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Figure 8 - Distributions of LTF3 (left) and LTF4 for all speakers, with doves in green, 
worms in purple and other speakers in grey (dashed coloured lines indicate near-members 

of animal groups; black dashed line indicates group distribution pooled from all 60 speakers)

A close examination of the speakers classified as doves in LTF3 and LTF4 suggests 
that these are all speakers with relatively extreme peak frequencies, on both the low 
and high ends of the collection of LTFD. The doves in Fig. 8 show a clear separation 
from the worms (and near-worms), who are generally close to the group norm, 
represented by the pooled distribution. The distributions of the worm speakers 
show peak frequencies that are much further away from the extremes. Their shapes 
are also relatively unremarkable, with no particularly sharp peaks.

Moving to the lower formants, Fig. 9 shows that LTF1 peaks are limited to a 
narrow range with relatively little between-speaker variation, which is not surprising 
in the present context, as F1 is correlated with vowel height and so would be highly 
constrained when the speech material is uniform across speakers. Nevertheless, 
the shape of the LTF1 distributions demonstrates substantial variability, especially 
within the region of frequencies above 500 Hz, where secondary peaks can be found 
for numerous speakers.

Fig. 9 further shows considerable variability in the distributions of LTF2, 
especially in the shapes of the distributions. While the peaks for most speakers 
reside between 1400 and 1600 Hz, the presence of secondary peaks and bimodality 
is not uncommon among this group of speakers.

As in the cases of LTF3 and LTF4, speakers classified as worms (and to a lesser 
extent, near-worms) show distributions that strongly resemble the group norms, both 
in LTF1 and LTF2. Similarly, many dove speakers can be identified as those whose 
distributions show peaks at especially low or high frequencies within this population. 
However, it is also clear that the distributions of some doves have peaks at frequencies 
that are by no means extreme, but indistinguishable from the group average. The 
distributions of these speakers nonetheless show distinctiveness in other ways, through 
either particularly sharp peaks (in LTF1 and LTF2) or bimodality (in LTF2). There 



SEEING THE TREES IN THE FOREST 91

are also three phantoms and one near-chameleon in the LTF2 system. Due to their low 
counts, the acoustic correlates of these groups are not analysed in detail, although it 
can be noted that the three phantoms all appear to demonstrate strong bimodality.

Figure 9 - Distributions of LTF1 (left) and LTF2 for all speakers, with doves in green, 
worms in purple, phantoms in blue, chameleons in orange and other speakers in grey 

(dashed coloured lines indicate near-members of animal groups; black dashed line 
indicates group distribution pooled from all 60 speakers)

In summary, the acoustic analysis presented in this section demonstrates a clear 
contrast between doves and worms in their LTFDs. Dove speakers are mostly 
accounted for by peaks of relatively extreme frequencies. This is most clearly 
demonstrated in LTF3 and LTF4, but can also be found in the lower formants. 
While the remaining doves display unremarkable peak frequencies, they show other 
distinctive characteristics in their distributions. By contrast, the distributions of 
speakers classified as worms all tend to very similar to the overall distributions of the 
group, in terms of both peak frequency and shape.

6. Discussion
The current study set out with two main aims, namely to investigate the effectiveness 
of individual-level analysis in LR-based FVC, and to explore the relationship 
between individual LR performance and the underlying data from semi-automatic 
linguistic-phonetic variables. This section discusses these two themes in turn.

Results from system testing of LTFDs show that, in terms of both Cllr and EER, 
LTFDs all performed at similar levels when tested individually but reported much 
stronger system performance when tested in combination. These results corroborate 
previous findings of higher discriminatory power in formant-based systems using a 
combination of multiple parameters (Becker et al., 2008; Gold et al., 2013; Hughes, 
Wood & Foulkes, 2016), as speaker-specific information from each parameter is 
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modelled in conjunction. Zooplot analysis undertaken in the current study further 
illustrates the complementarity of speaker specificity from different LTFDs on the 
individual level, demonstrating how they capture very different groups of speakers 
with outlying performance.

In the present study, while the worst performance out of all LTFDs was 
obtained from LTF2, LTF1 reported Cllr and EER that were at least on par with, if 
not marginally better than, LTF3 and LTF4. Earlier findings that higher formants 
outperform lower formants in LTFDs (Gold, et al., 2013) are thus not borne out 
here. Indeed, studies examining the discriminatory potentials of vowel formants 
have not yielded consistent findings as to whether higher formants convey a 
greater amount of speaker-discriminatory information than lower formants, which 
McDougall (2004) argues may depend on the speech materials and conditions. At 
the same time, when speaker classification is compared across systems, the influence 
of higher formants appears to dominate in the combined system, as evidenced by 
the high proportion of classifications shared with LTF3 and LTF4, whereas the 
contribution of the lower formants is comparatively limited. Zooplots here showed 
that, in the cases of LTF3 and LTF4, although most speakers had SS-LLRs of low 
magnitude that were clustered near 0, there were a number of (dove) speakers with 
exceptional mean LLRs, such that they were distant from the other speakers. LTF1, 
on the other hand, had no such speakers, and indeed reported a narrow range of 
mean SS-LLRs and DS-LLRs overall. Thus, it may be the case that the performance 
of higher formants here was driven by a small number of individuals who performed 
exceptionally well and thus carried over to the combined system, whereas the 
performance of LTF1 was driven by the population as a whole.

Beyond classification, the zooplots also allow identification of speakers who 
contribute most to errors in a system. Among the systems tested, mean SS-LLRs 
and DS-LLRs are well correlated, but stronger performance is generally found for 
different-speaker comparisons than for same-speaker comparisons, with a number 
of speakers reporting negative mean SS-LLRs on average. While other graphical 
means commonly used to illustrate system performance, such as Tippett plots, 
can also visualise the difference between the two types of comparison and the 
proportion of contrary-to-fact LRs, in a zooplot analysis the individuals can be 
placed into focus for further analysis.

Turning to the relationship between individual performance and the underlying 
acoustic data, in the case of LTFDs, a close correspondence between distinctive 
distributions and dove membership was found across all four formants. For many 
dove speakers, their LTFD peaks lie on the margins of the population distributions, 
which in turn lead to more skewed LTFDs. This was especially the case in LTF3 
and LTF4, where there is considerable between-speaker variability in the location 
of peaks within this population. Distributions of the remaining dove speakers are 
distinctive in other ways, such as particularly sharp peaks or bimodality. Worm 
speakers, on the other hand, had LTFDs characterised by their proximity to the 
population norms. These findings may in part explain why LTF1-3 means could 
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not predict animal group classification in Hughes et al. (2018), who explored this 
relationship using linear regression. Within individual LTFDs, speakers with very 
low or very high means can both be considered atypical, whereas it is speakers with 
means near the middle – not near the lower end – of the group who are considered 
highly typical and tend to provide weak evidence. The current study differs from 
Hughes et al. (2018) in that, in the present analysis, the underlying LTFDs were only 
compared with systems using individual formants, and not the combined system as 
was the case in Hughes et al. (2018), who also included formant bandwidths and 
delta coefficients in their systems. Therefore, other factors likely also contribute 
to the lack of association between the acoustic data and speaker performance. 
Nevertheless, it remains that the relationship between LTFD means and LR 
performance cannot be captured linearly.

The present study may have benefited from the uniform and high quality of 
the recordings, where confounding technical factors are not present and more 
effective harnessing of speaker-specific information in LTFDs is made possible. 
In forensically realistic materials, the utility of vowel formants may be limited due 
to effects of telephone transmission, especially on F1 (Byrne, Foulkes, 2014), and 
channel mismatch, leading to poorer and more unstable LR performance (Hughes 
et al., 2018), in which case individual analysis may be even more illuminating as to 
the factors that drive the performance of individual speakers. Further limitations 
include the use of controlled materials, which have enabled the isolation of the 
factor of speakers when examining individual variation in LTFDs but may yield 
LTFDs different from those derived from spontaneous speech due to the effect 
of style (Moos, 2010). Future investigations making use of poorer-quality data of 
spontaneous speech would be essential to address these limitations and in turn 
ascertain their impact on individual performance.

The scope of exploration between acoustic data and animal group membership 
was also limited in the present set of systems, since it was only possible to examine 
doves and worms in any level of detail. As only three phantoms and no chameleons 
were identified across all tested systems, it was not possible to properly conduct an 
examination of the underlying data that gave rise to these classifications, though it 
is interesting to note that the phantoms, like some of the doves, were characterised by 
bimodal distributions. That only the phantoms performed relatively poorly in same-
speaker comparisons suggests the possibility that bimodality was consistent between 
the questioned and known samples of those dove speakers, but not so in the case of 
the phantoms. Such possibility remains to be empirically tested in future studies. 
This study thus invites further research involving systems of other voice and speech 
features that focuses on the individual, in order to explore this issue more fully.

7. Conclusion
This exploratory study demonstrates the diagnostic value that individual-level analysis 
can add to LR-based system testing of (semi-automatic) linguistic-phonetic features, 
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providing insights into system performance that go beyond the level of single, global 
metrics. On the one hand, through identifying speakers with outlying performance 
within a system, it allows the potential factors behind their performance and the 
nature of errors to be investigated. On the other hand, it illustrates how speaker-
discriminatory information from individual features combines in a complementary 
fashion. Looking at the trees, then, can be an essential way to enrich our understanding 
of the forest. The findings here support the recommendation by Dunstone, Yager 
(2009) and Alexander et al. (2014) that zooplot analysis be conducted in system 
evaluation and call for wider adoption of the practice.
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