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Gender bias in voice recognition: An i- and x-vector-based 
gender-specific automatic speaker recognition study

One of the critical implications of the physiological differences between adult males 
and females is acoustic differences in speech production. Such acoustic signal variability 
between the genders affects automatic speech processing applications, especially automatic 
speaker recognition systems. In this paper, the performance of the genders in state-of-the-art 
automatic speaker recognition algorithms, such as i- and x-vector, is studied by training the 
algorithms using a gender-balanced multilingual dataset and tested with gender-separated 
data from two different languages (English and Mandarin). Furthermore, generated i- and 
x-vector speaker embedding distributions in higher-dimensions are analysed using the 
t-SNE technique. The area distribution of speaker embeddings aids interpretation of the 
speaker recognition performances for both algorithms.
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1. Introduction
Automatic speaker-recognition systems have emerged as an important means of 
verifying identity in many of today’s e-commerce applications, as well as in general 
business interactions, forensics, and law enforcement (Hansen, Hasan, 2015; Kahn, 
Audibert, Rossato & Bonastre, 2010). An ideal speaker recognition system models 
the identity of a speaker and later verifies the claimed identity of said speaker using 
her/his spoken utterance in any adverse conditions. In practice, the complexity of 
the speaker recognition model and the performance of the system are influenced by 
speaker variability such as age, gender, language, health, etc. (González Hautamäki, 
Hautamäki & Kinnunen, 2019).

In a long stream of speaker recognition research, extrinsic and intrinsic variations 
in the speech signal are major challenges. The most common extrinsic variations 
include diversity in recording device, ambient acoustics, background noise, 
transmission channel, and distortions introduced in pre-processing algorithms 
(Nagrani, Chung, Xie & Zisserman, 2020).

For instance, initial research was constrained to text-dependent tasks and 
focused on solving the variation caused by pronunciation randomness, for which the 
Hidden Markov Model (HMM) was the most popular (Parthasarathy, Rosenberg, 
1996). Later research attempted to solve text-independent tasks and had to deal 
with phonetic variation, which gave rise to the Gaussian Mixture Model with 
Universal Background Model (GMM-UBM) architecture (Reynolds, Quatieri & 
Dunn, 2000). Further research tried to address inter-session variation caused by 
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channels and speaking styles, for which the i-vector/PLDA architecture was the 
most successful (Dehak, Kenny, Dehak, Dumouchel & Ouellet, 2011). Recently, 
the research focus has been targeted towards dealing with complex variations in 
the wild scenarios, for which deep learning methods (deep neural network or 
DNN) have been demonstrated to be the most powerful (Okabe, Koshinaka & 
Shinoda, 2018; Snyder, Garcia-Romero, Sell, Povey & Khudanpur, 2018; Variani, 
Lei, Mcdermott, Moreno & Gonzalez-Dominguez, 2014).

Interestingly, however, performance degradation due to intrinsic variations, also 
known as within speaker variability, has received far less attention even though it 
has a strong impact on ASV system performance (González Hautamäki et al., 2019; 
Kahn et al., 2010). Within speaker variability arises from the speaker and can include 
changes in pronunciation, speaking style, short-term health condition, emotion, and/
or vocal effort (Karlsson, Banziger, Dankovicová, Johnstone, Lindberg, Melin, Nolan 
& Scherer, 1998). Besides, biological differences between males and females have 
consequences for the sounds they produce, such as the inner dimension of the mouth, 
throat, and vocal folds (Simpson, 2009). It is also clear that we make specific speech 
patterns appropriate to the gender; for example, male vocal folds tend to be longer 
and thicker than female vocal folds causing them to vibrate more slowly. As a result, 
male speakers have an average F0 of 131 Hz (Hertz, cycles per second), and females 
produce approximately twice the male frequency (220 Hz) (Hillenbrand, Clark, 
2009). In this paper, we limit our research focus to voice identity between genders.

To overcome the gender differences in recognition system performance, the 
speaker recognition community has concentrated on designing gender-conditioned 
systems. One such system was introduced in 2011 using a mixture of Probabilistic 
Linear Discriminant Analysis models (PLDA) with i-vector systems to make 
systems independent of speaker gender (Senoussaoui et al., 2011). The system was 
tested on 2010 NIST telephone speech (det5). The experiment showed that the 
Equal Error Rate (EER%) for male speakers was relatively better (1.81 EER%) 
than female speakers (2.47%). A pairwise discriminative training procedure for 
i-vector-based speaker recognition, presented in 2012, equally showed system 
performance for male speakers was relatively better in all the system variants 
(Cumani, Glembek, Brümmer, Villiers & Laface, 2012). Recent findings suggest 
that DNN-based speaker recognition methods such as x-vector systems achieve 
excellent results. The gender-dependent and independent systems’ performance 
was tested using Kaldi-based x-vector techniques on SRE10 data, and the results 
show that the gender-dependent systems outperformed the independent systems 
(Snyder, Garcia-Romero & Povey, 2015). However, the gender-specific scores were 
not discussed in the paper.

In this current work, we study the impact of gender differences in i- and 
x-vector systems. In speaker recognition system design, we controlled the gender 
balance of data used in training the model and in testing the system. Moreover, 
we analyse speaker embeddings of both i- and x-vector systems using dimension 
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reduction techniques to understand the gender properties in high-dimensional 
embedding space.

The paper is organized as follows: Section 2 describes the i- and x-vectors, and 
we briefly recall the recognition scoring methods that have been used in the system 
evaluations. Section 3 presents the automatic speaker recognition experiment 
results and speaker embedding analysis. Finally, in Section 4, we discuss the findings 
and conclusion.

2. Methods
2.1 Dataset

We used the multilingual speaker recognition corpora Voxceleb1 (Nagrani, Chung & 
Zisserman, 2017) and Voxceleb2 (Chung, Nagrani & Zisserman, 2018) to train the 
speaker recognition models. In both the Voxceleb1 and Voxceleb2 datasets, the number 
of male speakers is higher than the number of female speakers. To balance the gender, 
we randomly selected male speakers to balance the number of female speakers. The 
original and modified speaker counts are shown in Table 1.

Table 1 - Train dataset

Voxceleb1
Original Modified

Voxceleb2
Original Modified

#Total 1211 1092 5994 4402
#Male 665 546 3793 2201

#Female 546 546 2201 2201

For testing, we used two datasets, TIMIT (English) (Garofolo, Lamel, Fisher, Fiscus & 
Pallett, 1993) and AISHELL-1 (Mandarin) (Bu, Du, Na, Wu & Zheng, 2017). Similar 
to the modifications made to the training data, we did a gender balance in the test data, 
shown in Table 2.

Table 2 - Test dataset

TIMIT
Original Modified

AISHELL-1
Original Modified

#Total 630 384 400 372
#Male 432 198 186 186

#Female 198 198 214 186

Though we used multilingual corpora for training the model, we used a language-
specific (English and Mandarin) corpus for testing. The motivation is to explore the 
research question in a controlled speaker setting where we choose the language. In future 
studies, we will expand the question into more diverse and mixed language groups.
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2.2 Automatic Speaker Recognition Algorithms

Both i- and x-vector systems were built using the Kaldi speech recognition toolkit 
(Povey, Ghoshal, Goel, Hannemann, Qian, Schwarz, Silovsk & Motl, 1968). We 
used a gender-balanced (see §2.1) version of Voxceleb1 and Voxceleb2 to train our 
recognition algorithms.

2.2.1 I-vector
An i-vector system1 is a generative model that is derived using a total variability 
matrix (TVM) (Dehak et al., 2011). The TVM, obtained using unsupervised 
learning, is used to represent each utterance in a compact low-dimensional vector 
with an assumption that the speaker and session-dependent super vector M of 
Gaussian mean vectors may be modelled as

(1)

where m is the speaker and session-independent super vector obtained from a 
Gaussian mixture model (GMM) based universal background model (UBM), 
T is a low-rank total variability matrix that captures both speaker and session 
variability, and the i-vector is the posterior mean of w. The system is trained on 
30 MFCC features with a frame-length of 25ms that are mean-normalized over 
a sliding window of up to 3 seconds. An energy-based speech activity detection 
(SAD) system selects features corresponding to speech frames. The UBM is a 
2048 component full-covariance GMM. We extracted 400-dimensional i-vectors 
followed by an LDA scoring method (see §2.2.3).

2.2.2 X-vector
The x-vector system2 is a time-delayed neural network architecture-based technique. 
We used 30-dimensional filter-banks with a frame-length of 25ms, mean-normalized 
over a sliding window of three seconds to train the x-vector system. Energy-based 
SAD (same as i-vector) is used to discard non-speech frames. We further applied 
augmentation on this data by adding music, speech, and noise using the MUSAN 
data set (Snyder, Chen & Povey, 2015); this consists of over 900 noises, 42 hours of 
music from various genres, and 60 hours of speech from twelve languages. This data 
augmentation helps the x-vector algorithm to be robust against noises and speech 
variabilities. Finally, we extracted 512-dimensional x-vectors followed by a PLDA 
scoring method (see §2.2.3).

2.2.3 Performance scoring
The results are presented in terms of equal error rate (EER), which corresponds 
to equal miss and false alarm rate. For both systems, linear discriminant 
analysis (LDA) is used to reduce the speaker embedding dimension. The LDA 

1 Kaldi i-vector recipe at https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v1
2 Kaldi x-vector recipe at https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
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dimensionality varies from 100 to 400 for i-vectors and 100 to 500 for x-vectors 
with 100 step-size. Further, the probabilistic linear discriminant analysis 
(PLDA) model is used for channel/session compensation and measuring EER 
scoring in our experiments.

3. Results
Figure 1 - The speaker recognition performance (EER%) of the i-vector system 

in 2 different datasets and different genders. The LDA -dimension is varied in the range 
of 100 to 400 with 100 step-sizes

We trained the recognition models (i- and x-vectors) with undifferentiated gender 
(gender-balanced and mixed), and the testing was carried out on gender-separated 
datasets. Overall, the x-vector system outperformed the i-vector system, as expected. 
Notably, both the training methods are showing similar performance trends 
between genders. The male speaker recognition scores are better than those for 
female speakers in both i- and x-vector systems independent of dataset and LDA-
dimensions. For i-and x-vectors systems, changes in LDA dimension improve the 
overall performance of the AISHELL-1 dataset but have no impact on TIMIT 
i-vector systems (Fig. 1), and show counter effects in TIMIT x-vector systems (Fig. 
2). Using a t-distributed stochastic neighbour embedding (t-SNE) (Van der Maaten, 
Hinton, 2008) dimension reduction technique, the dimension of extracted speaker 
embeddings from both i-vectors (400-dimension) and x-vectors (512-dimension) 
were reduced to two-dimensional vectors, as shown in Figs. 3 and 4.
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Figure 2 - The speaker recognition performance (EER%) of the x-vector system 
in 2 different datasets and different genders. The LDA -dimension is varied in the range 

of 100 to 400 with 100 step-sizes

Figure 3 - t-SNE reduced two-dimensional spaces of TIMIT speakers from i-vector 
(1) 400-dimension and x-vector (2) 512-dimension speaker embeddings

The male and female speakers were clustered, and the cluster area is measured by 
fitting a 95% confidence ellipse. The elliptical area for male and female speakers 
in both TIMIT (Fig. 3) and AISHELL-1 (Fig. 4) datasets for i- and x-vectors are 
shown below. We did 6-fold cross-validation (sub-figs. A till F as shown in Figs 
3 and 4) on each dataset and each recognition algorithm to get a statistically 
valid cluster area measure. The cluster area of 6-fold cross-validation measured in 
i- and x-vectors of TIMIT and AISHELL-1 dataset is shown in Fig. 5. A 3-way 
ANOVA (Area as dependent factor and Gender, Dataset, and Recognition Type as 
independent factors) was performed. The main effects of Dataset [F (1,40) = 4.962, 
p=.0316] and Type [F (1,40) = 10.324, p=.0026] are significant. The interaction 
is significant between Dataset and Type [F (1,40) = 5.147, p=.0288], and Gender 
and Type [F (1,40) =25.034, p<.0001]. The three-way interaction is not significant 
[F (1,40) = .796, p=.3775].
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Figure 4 - t-SNE reduced two-dimensional spaces of AISHELL-1 speakers from i-vector 
(1) 400-dimension and x-vector (2) 512-dimension speaker embeddings

Figure 5 - Cluster area of speaker embeddings from TIMIT and AISHELL-1 datasets 
in the 2-dimension t-SNE space

4. Discussion
Overall, the findings show that the performance of male speaker verification is better 
than that for female speakers, independent of the voice recognition algorithm and 
language of the dataset. These gender performance differences therefore corroborate 
findings from previous studies on gender-dependent and independent speaker 
recognition results (Cumani et al., 2012; Senoussaoui, Kenny, Brümmer, De Villiers 
& Dumouchel, 2011; Snyder et al., 2015: 92-97). In the current investigation, we 
controlled parameters such as the gender balance in training and testing data and 
LDA dimensions; however, the recognition performance difference between the 
gender was unaffected. Furthermore, the performance of the x-vector system is better 
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than the i-vector system as expected (Snyder et al., 2018), since the power of DNN 
makes it possible to capture subtle speaker-specific indexical information.

The t-SNE based speaker embedding analysis sheds some light on understanding 
the distribution of gender in higher-dimensional spaces. The idea of finding a 
correlation between algorithm performance and speaker embedding distribution has 
shown different effects in two different algorithms. The male speaker embedding in 
the i-vector space occupies a smaller area than that occupied by the female speakers. 
In contrast, the female speakers in the x-vector embedding space occupy a smaller area 
than male speakers. Fundamentally, the idea and mathematics behind i-vector and 
x-vector algorithms are different. There is seemingly no reason that both algorithms 
would model the speakers similarly. However, they have shown comparable effects 
across two different datasets, which paves the way for understanding the speaker 
embedding distribution properties with speaker recognition performance.

In future research, the acoustic feature extraction parameters such as frame 
length and number of MFCCs used to build the recognition models will be 
investigated to further understand the performance difference between the genders. 
In addition, we will explore the implications of the area of embedding distributions 
in the higher dimension (see Fig. 5) by manipulating the spread. Alternatively, 
some new perspectives about speaker individualities in a voice, like how individual 
speakers control their identity to some degree, are recently being discussed (Dellwo, 
Pellegrino, He & Kathiresan, 2019). These will also be considered in further studies 
to investigate the gender difference in speaker recognition performance.
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